Nothing Special   »   [go: up one dir, main page]

Skip to main content

Partial Alignment of Data Sets Based on Fast Intrinsic Feature Match

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11775))

  • 2746 Accesses

Abstract

Point Feature Histograms (PFH) is a statistic and geometric invariant descriptor that has been widely used in shape analysis. Current PFH based feature extraction methods are highly affected by the time scale and become less effective for unbalanced cases, which limits their performance. In this paper, we focus on finding a framework for partial registration by an adaptive partition of point set algorithm. Firstly, we propose an adaptive partition method base on PFH coding. Secondly, we conduct a series of fast parallel implementations for efficiency. Thirdly, we plug in the PFH based partition method and trimmed strategy to our modified iterative closest point method. Experiments demonstrate that our algorithms are robust and stable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://graphics.stanford.edu/data/3Dscanrep/

  2. https://www.cc.gatech.edu/projects/

  3. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  4. Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  5. Chen, J., Belaton, B., Pan, Z.: A robust subset-ICP method for point set registration. In: Zaman, H.B., Robinson, P., Olivier, P., Shih, T.K., Velastin, S. (eds.) IVIC 2013. LNCS, vol. 8237, pp. 59–69. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02958-0_6

    Chapter  Google Scholar 

  6. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992)

    Article  Google Scholar 

  7. Chetverikov, D., Stepanov, D., Krsek, P.: Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm. Image Vis. Comput. 23(3), 299–309 (2005)

    Article  Google Scholar 

  8. Dong, J., Peng, Y., Ying, S., Hu, Z.: LieTrICP: an improvement of trimmed iterative closest point algorithm. Neurocomputing 140, 67–76 (2014)

    Article  Google Scholar 

  9. Du, S., Guo, Y., Sanroma, G., Ni, D., Wu, G., Shen, D.: Building dynamic population graph for accurate correspondence detection. Med. Image Anal. 26(1), 256–267 (2015)

    Article  Google Scholar 

  10. Du, S., Zhu, J., Zheng, N., Liu, Y., Ce, L.: Robust iterative closest point algorithm for registration of point sets with outliers. Opt. Eng. 50(8), 087001 (2011)

    Article  Google Scholar 

  11. Du, S.Y., Zheng, N.N., Meng, G.F., Yuan, Z.J., Li, C.: Affine registration of point sets using ICP and ICA. IEEE Signal Process. Lett. 15, 689–692 (2008)

    Article  Google Scholar 

  12. Du, S.Y., Zheng, N.N., Ying, S.H., Liu, J.Y.: Affine iterative closest point algorithm for point set registration. Pattern Recogn. Lett. 31, 791–799 (2010)

    Article  Google Scholar 

  13. Johnson, A.E., Hebert, M.: Surface registration by matching oriented points. In: Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling, NRC 1997, p. 121. IEEE Computer Society (1997)

    Google Scholar 

  14. Peng, Y., Ying, S., Qin, J., Zeng, T.: Trimmed strategy for affine registration of point sets. J. Appl. Remote Sens. 7(1), 073468 (2013)

    Article  Google Scholar 

  15. Ying, S., Peng, J., Du, S., Qiao, H.: A scale stretch method based on ICP for 3D data registration. IEEE Trans. Autom. Sci. Eng. 6(3), 559–565 (2009)

    Article  Google Scholar 

  16. Ying, S., Peng, Y., Wen, Z.: Iwasawa decomposition: a new approach to 2D affine registration problem. Pattern Anal. Appl. 24(2), 127–137 (2011)

    Article  MathSciNet  Google Scholar 

  17. Zha, H., Ikuta, M., Hasegawa, T.: Registration of range images with different scanning resolutions. In: Proceedings of the IEEE International Conference on System, Man, Cybernetics, Nashville, Tennessee, USA, pp. 1495–1500 (2000)

    Google Scholar 

  18. Zhang, Z.: Iterative point matching for registration of free form surfaces. Int. J. Comput. Vision 13(2), 119–152 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11771276.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaomin Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, Y., Wen, N., Zhu, X., Shen, C. (2019). Partial Alignment of Data Sets Based on Fast Intrinsic Feature Match. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds) Knowledge Science, Engineering and Management. KSEM 2019. Lecture Notes in Computer Science(), vol 11775. Springer, Cham. https://doi.org/10.1007/978-3-030-29551-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29551-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29550-9

  • Online ISBN: 978-3-030-29551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics