Abstract
Point Feature Histograms (PFH) is a statistic and geometric invariant descriptor that has been widely used in shape analysis. Current PFH based feature extraction methods are highly affected by the time scale and become less effective for unbalanced cases, which limits their performance. In this paper, we focus on finding a framework for partial registration by an adaptive partition of point set algorithm. Firstly, we propose an adaptive partition method base on PFH coding. Secondly, we conduct a series of fast parallel implementations for efficiency. Thirdly, we plug in the PFH based partition method and trimmed strategy to our modified iterative closest point method. Experiments demonstrate that our algorithms are robust and stable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)
Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)
Chen, J., Belaton, B., Pan, Z.: A robust subset-ICP method for point set registration. In: Zaman, H.B., Robinson, P., Olivier, P., Shih, T.K., Velastin, S. (eds.) IVIC 2013. LNCS, vol. 8237, pp. 59–69. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02958-0_6
Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992)
Chetverikov, D., Stepanov, D., Krsek, P.: Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm. Image Vis. Comput. 23(3), 299–309 (2005)
Dong, J., Peng, Y., Ying, S., Hu, Z.: LieTrICP: an improvement of trimmed iterative closest point algorithm. Neurocomputing 140, 67–76 (2014)
Du, S., Guo, Y., Sanroma, G., Ni, D., Wu, G., Shen, D.: Building dynamic population graph for accurate correspondence detection. Med. Image Anal. 26(1), 256–267 (2015)
Du, S., Zhu, J., Zheng, N., Liu, Y., Ce, L.: Robust iterative closest point algorithm for registration of point sets with outliers. Opt. Eng. 50(8), 087001 (2011)
Du, S.Y., Zheng, N.N., Meng, G.F., Yuan, Z.J., Li, C.: Affine registration of point sets using ICP and ICA. IEEE Signal Process. Lett. 15, 689–692 (2008)
Du, S.Y., Zheng, N.N., Ying, S.H., Liu, J.Y.: Affine iterative closest point algorithm for point set registration. Pattern Recogn. Lett. 31, 791–799 (2010)
Johnson, A.E., Hebert, M.: Surface registration by matching oriented points. In: Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling, NRC 1997, p. 121. IEEE Computer Society (1997)
Peng, Y., Ying, S., Qin, J., Zeng, T.: Trimmed strategy for affine registration of point sets. J. Appl. Remote Sens. 7(1), 073468 (2013)
Ying, S., Peng, J., Du, S., Qiao, H.: A scale stretch method based on ICP for 3D data registration. IEEE Trans. Autom. Sci. Eng. 6(3), 559–565 (2009)
Ying, S., Peng, Y., Wen, Z.: Iwasawa decomposition: a new approach to 2D affine registration problem. Pattern Anal. Appl. 24(2), 127–137 (2011)
Zha, H., Ikuta, M., Hasegawa, T.: Registration of range images with different scanning resolutions. In: Proceedings of the IEEE International Conference on System, Man, Cybernetics, Nashville, Tennessee, USA, pp. 1495–1500 (2000)
Zhang, Z.: Iterative point matching for registration of free form surfaces. Int. J. Comput. Vision 13(2), 119–152 (1994)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant No. 11771276.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Peng, Y., Wen, N., Zhu, X., Shen, C. (2019). Partial Alignment of Data Sets Based on Fast Intrinsic Feature Match. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds) Knowledge Science, Engineering and Management. KSEM 2019. Lecture Notes in Computer Science(), vol 11775. Springer, Cham. https://doi.org/10.1007/978-3-030-29551-6_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-29551-6_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29550-9
Online ISBN: 978-3-030-29551-6
eBook Packages: Computer ScienceComputer Science (R0)