Nothing Special   »   [go: up one dir, main page]

Skip to main content

Exploring Transfer Learning for Low Resource Emotional TTS

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1037))

Included in the following conference series:

Abstract

During the last few years, spoken language technologies have known a big improvement thanks to Deep Learning. However Deep Learning-based algorithms require amounts of data that are often difficult and costly to gather. Particularly, modeling the variability in speech of different speakers, different styles or different emotions with few data remains challenging. In this paper, we investigate how to leverage fine-tuning on a pre-trained Deep Learning-based TTS model to synthesize speech with a small dataset of another speaker. Then we investigate the possibility to adapt this model to have emotional TTS by fine-tuning the neutral TTS model with a small emotional dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/numediart/EmoV-DB.

  2. 2.

    https://keithito.com/LJ-Speech-Dataset.

References

  1. Wu, Z., Watts, O., King, S.: Merlin: an open source neural network speech synthesis system. In: Proceedings SSW, Sunnyvale, USA (2016)

    Google Scholar 

  2. van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.W., Kavukcuoglu, K.: Wavenet: a generative model for raw audio. In: SSW (2016)

    Google Scholar 

  3. Wang, Y., Skerry-Ryan, R.J., Stanton, D., Wu, Y., Weiss, R.J., Jaitly, N., Yang, Z., Xiao, Y., Chen, Z., Bengio, S., Le, Q.V., Agiomyrgiannakis, Y., Clark, R., Saurous, R.A.: Tacotron: towards end-to-end speech synthesis. In: Interspeech (2017)

    Google Scholar 

  4. Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S., Casagrande, N., Lockhart, E., Stimberg, F., van den Oord, A., Dieleman, S., Kavukcuoglu, K.: Efficient neural audio synthesis. arXiv preprint arXiv:1802.08435 (2018)

  5. Sotelo, J., Mehri, S., Kumar, K., Santos, J.F., Kastner, K., Courville, A., Bengio, Y.: Char2wav: end-to-end speech synthesis. In: ICLR2017 Workshop Submission (2017)

    Google Scholar 

  6. Arik, S.O., Chrzanowski, M., Coates, A., Diamos, G., Gibiansky, A., Kang, Y., Li, X., Miller, J., Ng, A., Raiman, J., et al.: Deep voice: real-time neural text-to-speech. arXiv preprint arXiv:1702.07825 (2017)

  7. Tachibana, H., Uenoyama, K., Aihara, S.: Efficiently trainable text-to-speech system based on deep convolutional networks with guided attention. arXiv preprint arXiv:1710.08969 (2017)

  8. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertainty, Fuzziness Knowl.-Based Syst. 6(02), 107–116 (1998)

    Article  Google Scholar 

  9. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  10. Laraba, S., Brahimi, M., Tilmanne, J., Dutoit, T.: 3D skeleton-based action recognition by representing motion capture sequences as 2D-RGB images. Comput. Animat. Virt. W. 28(3–4), e1782 (2017)

    Article  Google Scholar 

  11. Tits, N., El Haddad, K., Dutoit, T.: Asr-based features for emotion recognition: a transfer learning approach. arXiv preprint arXiv:1805.09197 (2018)

  12. Jia, Y., Zhang, Y., Weiss, R.J., Wang, Q., Shen, J., Ren, F., Chen, Z., Nguyen, P., Pang, R., Moreno, I.L., et al.: Transfer learning from speaker verification to multispeaker text-to-speech synthesis arXiv preprint arXiv:1806.04558 (2018)

  13. Shen, J., Pang, R., Weiss, R.J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang, Y., Wang, Y., Skerry-Ryan, R.J., Saurous, R.A., Agiomyrgiannakis, Y., Wu, Y.: Natural tts synthesis by conditioning wavenet on mel spectrogram predictions. CoRR, vol. abs/1712.05884 (2017)

    Google Scholar 

  14. Lee, Y., Rabiee, A., Lee, S.Y.: Emotional end-to-end neural speech synthesizer. arXiv preprint arXiv:1711.05447 (2017)

  15. Kyubyong, P.: A tensorflow implementation of dc-tts: yet another text-to-speech model (2018). https://github.com/Kyubyong/dc_tts

  16. Adigwe, A., Tits, N., El Haddad, K., Ostadabbas, S., Dutoit, T.: The emotional voices database: towards controlling the emotion dimension in voice generation systems. arXiv preprint arXiv:1806.09514 (2018)

  17. Kominek, J., Black, A.W.: The CMU arctic speech databases. In: Fifth ISCA Workshop on Speech Synthesis (2004)

    Google Scholar 

  18. Honnet, P.-E., Lazaridis, A., Garner, P.N., Yamagishi, J.: The siwis french speech synthesis database? Design and recording of a high quality french database for speech synthesis. Online Database (2017)

    Google Scholar 

  19. El Haddad, K., Tits, N., Dutoit, T.: Annotating nonverbal conversation expressions in interaction datasets. In: Proceedings of Laughter Workshop 2018, September 2018

    Google Scholar 

  20. Orozco-Arroyave, J.R., Vdsquez-Correa, J.C., Hönig, F., Arias-Londoño, J.D., Vargas-Bonilla, J.F., Skodda, S., Rusz, J., Noth, E.: Towards an automatic monitoring of the neurological state of parkinson’s patients from speech. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6490–6494. IEEE (2016)

    Google Scholar 

  21. Rothauser, E.H.: IEEE recommended practice for speech quality measurements. IEEE Trans. Audio Electroacoust. 17, 225–246 (1969)

    Article  Google Scholar 

  22. Alamsaputra, D.M., Kohnert, K.J., Munson, B., Reichle, J.: Synthesized speech intelligibility among native speakers and non-native speakers of english. Augmentative Altern. Commun. 22(4), 258–268 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

Noé Tits is funded through a PhD grant from the Fonds pour la Formation à la Recherche dans l’Industrie et l’Agriculture (FRIA), Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noé Tits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tits, N., El Haddad, K., Dutoit, T. (2020). Exploring Transfer Learning for Low Resource Emotional TTS. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1037. Springer, Cham. https://doi.org/10.1007/978-3-030-29516-5_5

Download citation

Publish with us

Policies and ethics