Abstract
During the last few years, spoken language technologies have known a big improvement thanks to Deep Learning. However Deep Learning-based algorithms require amounts of data that are often difficult and costly to gather. Particularly, modeling the variability in speech of different speakers, different styles or different emotions with few data remains challenging. In this paper, we investigate how to leverage fine-tuning on a pre-trained Deep Learning-based TTS model to synthesize speech with a small dataset of another speaker. Then we investigate the possibility to adapt this model to have emotional TTS by fine-tuning the neutral TTS model with a small emotional dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wu, Z., Watts, O., King, S.: Merlin: an open source neural network speech synthesis system. In: Proceedings SSW, Sunnyvale, USA (2016)
van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.W., Kavukcuoglu, K.: Wavenet: a generative model for raw audio. In: SSW (2016)
Wang, Y., Skerry-Ryan, R.J., Stanton, D., Wu, Y., Weiss, R.J., Jaitly, N., Yang, Z., Xiao, Y., Chen, Z., Bengio, S., Le, Q.V., Agiomyrgiannakis, Y., Clark, R., Saurous, R.A.: Tacotron: towards end-to-end speech synthesis. In: Interspeech (2017)
Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S., Casagrande, N., Lockhart, E., Stimberg, F., van den Oord, A., Dieleman, S., Kavukcuoglu, K.: Efficient neural audio synthesis. arXiv preprint arXiv:1802.08435 (2018)
Sotelo, J., Mehri, S., Kumar, K., Santos, J.F., Kastner, K., Courville, A., Bengio, Y.: Char2wav: end-to-end speech synthesis. In: ICLR2017 Workshop Submission (2017)
Arik, S.O., Chrzanowski, M., Coates, A., Diamos, G., Gibiansky, A., Kang, Y., Li, X., Miller, J., Ng, A., Raiman, J., et al.: Deep voice: real-time neural text-to-speech. arXiv preprint arXiv:1702.07825 (2017)
Tachibana, H., Uenoyama, K., Aihara, S.: Efficiently trainable text-to-speech system based on deep convolutional networks with guided attention. arXiv preprint arXiv:1710.08969 (2017)
Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertainty, Fuzziness Knowl.-Based Syst. 6(02), 107–116 (1998)
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)
Laraba, S., Brahimi, M., Tilmanne, J., Dutoit, T.: 3D skeleton-based action recognition by representing motion capture sequences as 2D-RGB images. Comput. Animat. Virt. W. 28(3–4), e1782 (2017)
Tits, N., El Haddad, K., Dutoit, T.: Asr-based features for emotion recognition: a transfer learning approach. arXiv preprint arXiv:1805.09197 (2018)
Jia, Y., Zhang, Y., Weiss, R.J., Wang, Q., Shen, J., Ren, F., Chen, Z., Nguyen, P., Pang, R., Moreno, I.L., et al.: Transfer learning from speaker verification to multispeaker text-to-speech synthesis arXiv preprint arXiv:1806.04558 (2018)
Shen, J., Pang, R., Weiss, R.J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang, Y., Wang, Y., Skerry-Ryan, R.J., Saurous, R.A., Agiomyrgiannakis, Y., Wu, Y.: Natural tts synthesis by conditioning wavenet on mel spectrogram predictions. CoRR, vol. abs/1712.05884 (2017)
Lee, Y., Rabiee, A., Lee, S.Y.: Emotional end-to-end neural speech synthesizer. arXiv preprint arXiv:1711.05447 (2017)
Kyubyong, P.: A tensorflow implementation of dc-tts: yet another text-to-speech model (2018). https://github.com/Kyubyong/dc_tts
Adigwe, A., Tits, N., El Haddad, K., Ostadabbas, S., Dutoit, T.: The emotional voices database: towards controlling the emotion dimension in voice generation systems. arXiv preprint arXiv:1806.09514 (2018)
Kominek, J., Black, A.W.: The CMU arctic speech databases. In: Fifth ISCA Workshop on Speech Synthesis (2004)
Honnet, P.-E., Lazaridis, A., Garner, P.N., Yamagishi, J.: The siwis french speech synthesis database? Design and recording of a high quality french database for speech synthesis. Online Database (2017)
El Haddad, K., Tits, N., Dutoit, T.: Annotating nonverbal conversation expressions in interaction datasets. In: Proceedings of Laughter Workshop 2018, September 2018
Orozco-Arroyave, J.R., Vdsquez-Correa, J.C., Hönig, F., Arias-Londoño, J.D., Vargas-Bonilla, J.F., Skodda, S., Rusz, J., Noth, E.: Towards an automatic monitoring of the neurological state of parkinson’s patients from speech. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6490–6494. IEEE (2016)
Rothauser, E.H.: IEEE recommended practice for speech quality measurements. IEEE Trans. Audio Electroacoust. 17, 225–246 (1969)
Alamsaputra, D.M., Kohnert, K.J., Munson, B., Reichle, J.: Synthesized speech intelligibility among native speakers and non-native speakers of english. Augmentative Altern. Commun. 22(4), 258–268 (2006)
Acknowledgments
Noé Tits is funded through a PhD grant from the Fonds pour la Formation à la Recherche dans l’Industrie et l’Agriculture (FRIA), Belgium.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Tits, N., El Haddad, K., Dutoit, T. (2020). Exploring Transfer Learning for Low Resource Emotional TTS. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1037. Springer, Cham. https://doi.org/10.1007/978-3-030-29516-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-29516-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29515-8
Online ISBN: 978-3-030-29516-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)