Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Switching Approach that Improves Prediction Accuracy for Long Tail Recommendations

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1037))

Included in the following conference series:

Abstract

Recommender systems are software tools that play an important role of generating a list of recommendations for unseen items based on the past users experience and interactions. One of the most popular approaches is Collaborative Filtering (CF) that considers the users similarities to generate the recommendation. Although, recommender systems have been discovered in many aspects, the popularity bias is still one of the challenges that need to be considered. Therefore, we proposed a novel model that applies a switching technique to solve the long tail recommendation problem (LTRP) when collaborative filtering fails to find the target case using a multi-level method. We evaluate the results using the public dataset 100K Movielens. Our result outperforms all the existing methods through reducing the recommendation error rates for the items in the long tail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdollahpouri, H., Burke, R., Mobasher, B.: Value-aware item weighting for long-tail recommendation. arXiv preprint (2018). arXiv:1802.05382

  2. Alshammari, G., Jorro-Aragoneses, J.L., Kapetanakis, S., Petridis, M., Recio-García, J.A., Díaz-Agudo, B.: A hybrid cbr approach for the long tail problem in recommender systems. In: International Conference on Case-Based Reasoning, pp. 35–45. Springer (2017)

    Google Scholar 

  3. Alshammari, G., Kapetanakis, S., Polatidis, N., Petridis, M.: A triangle multi-level item-based collaborative filtering method that improves recommendations. In: International Conference on Engineering Applications of Neural Networks, pp. 145–157. Springer (2018)

    Google Scholar 

  4. Anderson, C.: The long tail: why the future of business is selling less of more by Chris Anderson. J. Prod. Innovation Manag. 24(3), 1–30 (2007)

    Google Scholar 

  5. Ayub, M., Ghazanfar, M.A., Maqsood, M., Saleem, A.: A jaccard base similarity measure to improve performance of cf based recommender systems. In: 2018 International Conference on Information Networking (ICOIN), pp. 1–6. IEEE (2018)

    Google Scholar 

  6. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, pp. 43–52. Morgan Kaufmann Publishers Inc. (1998)

    Google Scholar 

  7. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)

    Article  Google Scholar 

  8. Craw, S., Horsburgh, B., Massie, S.: Music recommendation: audio neighbourhoods to discover music in the long tail. Lect. Notes Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9343, 73–87 (2015)

    Google Scholar 

  9. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: Proceedings of the Fourth ACM Conference on Recommender Systems - RecSys 2010 p. 39 (2010)

    Google Scholar 

  10. Gedikli, F., Jannach, D.: Recommending based on rating frequencies: accurate enough? In: Proceedings of the 8th Workshop on Intelligent Techniques for Web Personalization & Recommender Systems at UMAP 2010 (ITWP 2010). pp. 65–70 (2010)

    Google Scholar 

  11. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)

    Article  Google Scholar 

  12. Grozin, V., Levina, A.: Similar product clustering for long-tail cross-sell recommendations. In: AIST (Supplement), pp. 273–280 (2017)

    Google Scholar 

  13. Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 191–1919 (2015). http://doi.acm.org/10.1145/2827872

    Article  Google Scholar 

  14. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 230–237. ACM (1999)

    Google Scholar 

  15. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)

    Article  Google Scholar 

  16. Jeong, B., Lee, J., Cho, H.: Improving memory-based collaborative filtering via similarity updating and prediction modulation. Inf. Sci. 180(5), 602–612 (2010)

    Article  Google Scholar 

  17. Katarya, R., Verma, O.P.: Effectual recommendations using artificial algae algorithm and fuzzy c-mean. Swarm Evol. Comput. 36, 52–61 (2017)

    Article  Google Scholar 

  18. Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience. User Model. User-Adap. Inter. 22(1–2), 101–123 (2012)

    Article  Google Scholar 

  19. Park, Y.J.: The adaptive clustering method for the long tail problem of recommender systems. IEEE Trans. Knowl. Data Eng. 25(8), 1904–1915 (2013)

    Article  Google Scholar 

  20. Park, Y.J., Tuzhilin, A.: The long tail of recommender systems and how to leverage it. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 11–18. ACM (2008)

    Google Scholar 

  21. Polatidis, N., Georgiadis, C.K.: A multi-level collaborative filtering method that improves recommendations. Expert Syst. Appl. 48, 100–110 (2016)

    Article  Google Scholar 

  22. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, pp. 175–186. ACM (1994)

    Google Scholar 

  23. Shen, K., Liu, Y., Zhang, Z.: Modified similarity algorithm for collaborative filtering. In: International Conference on Knowledge Management in Organizations, pp. 378–385. Springer (2017)

    Google Scholar 

  24. Shi, Y., Larson, M., Hanjalic, A.: Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future challenges. ACM Comput. Surv. (CSUR) 47(1), 3 (2014)

    Article  Google Scholar 

  25. Sun, S.B., Zhang, Z.H., Dong, X.L., Zhang, H.R., Li, T.J., Zhang, L., Min, F.: Integrating triangle and jaccard similarities for recommendation. PloS One 12(8), e0183570 (2017)

    Article  Google Scholar 

  26. Tan, Z., He, L.: An efficient similarity measure for user-based collaborative filtering recommender systems inspired by the physical resonance principle. IEEE Access 5, 27211–27228 (2017)

    Article  Google Scholar 

  27. Wei, S., Zheng, X., Chen, D., Chen, C.: A hybrid approach for movie recommendation via tags and ratings q. Electron. Commer. Res. Appl. 18, 83–94 (2016)

    Article  Google Scholar 

  28. Yin, H., Cui, B., Li, J., Yao, J., Chen, C.: Challenging the long tail recommendation. Proc. VLDB Endowment 5(9), 896–907 (2012). http://dl.acm.org/citation.cfm?id=2311916

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gharbi Alshammari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alshammari, G., Jorro-Aragoneses, J.L., Kapetanakis, S., Polatidis, N., Petridis, M. (2020). A Switching Approach that Improves Prediction Accuracy for Long Tail Recommendations. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1037. Springer, Cham. https://doi.org/10.1007/978-3-030-29516-5_3

Download citation

Publish with us

Policies and ethics