Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evaluation of Maritime Event Detection Against Missing Data

  • Conference paper
  • First Online:
Quality of Information and Communications Technology (QUATIC 2019)

Abstract

Detecting and preventing maritime events like collisions or unusual behaviour of vessels are of high importance for maritime safety and security. As the trust of human operators in automated maritime event detection and prediction depends on the quality of the corresponding algorithms, the evaluation methodology becomes a driving force for the future development of maritime event detection and forecasting methods. The main contribution of this article consists in the development of an evaluation methodology and its application to a selected set of maritime event detectors. The approach links a reference dataset, controlled data variations, maritime event detection algorithms with internal parameters, and performance criteria. Among pre-established possible input data variations applied to a reference Automatic Identification System (AIS) dataset, the article focuses on the evaluation of detection accuracy of maritime event detectors implemented with the Event Calculus logical language against variable amounts of missing data, as a frequently observable type of AIS data degradation. Twelve maritime event pattern detectors are evaluated and most of them are found to vary very little in performance while only one detector shows an unexpected strong performance drop giving insights into how to improve the detection method. Results are provided on a real AIS data enriched with specific simulated events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andler, S., Fredin, M., Gustafsson, F., van Laere, J., Nilsson, M., Svenson, P.: SMARTracIn - a concept for spoof resistant tracking of vessel and detection of adverse intentions. In: SPIE Defense, Security, and Sensing, Orlando, FL (2009)

    Google Scholar 

  2. Artikis, A., Sergot, M.J.: Executable specification of open multi-agent systems. Logic J. IGPL 18(1), 31–65 (2010)

    Article  MathSciNet  Google Scholar 

  3. Artikis, A., Sergot, M.J., Paliouras, G.: An event calculus for event recognition. IEEE Trans. Knowl. Data Eng. 27(4), 895–908 (2015)

    Article  Google Scholar 

  4. Auslander, B., Gupta, K.M., Aha, D.W.: A comparative evaluation of anomaly detection algorithms for maritime video surveillance. In: Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense X, vol. 8019, p. 801907. SPIE (2011)

    Google Scholar 

  5. Iphar, C., Jousselme, A.L., Ray, C.: Pseudo-synthetic datasets in support to maritime surveillance algorithms assessment. In: Proceedings of the VERITA Workshop, 19ieme Journées Francophones Extraction et Gestion des Connaissances (EGC 2019), January 2019

    Google Scholar 

  6. ITU: Technical characteristics for an automatic identification system using time-division multiple access in the VHF maritime mobile band (2010)

    Google Scholar 

  7. Jousselme, A.L., Maupin, P.: Comparison of uncertainty representations for missing data in information retrieval. In: Proceedings of the 16th International Conference on Information Fusion, pp. 1902–1909. IEEE (2013)

    Google Scholar 

  8. Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Gener. Comput. 4(1), 67–95 (1986)

    Article  Google Scholar 

  9. Lavesson, N., Davidsson, P.: Evaluating learning algorithms and classifiers. Int. J. Intell. Inf. Database Syst. 1(1), 37–52 (2007)

    Google Scholar 

  10. Margineantu, D.D., Dietterich, T.G., et al.: Bootstrap methods for the cost-sensitive evaluation of classifiers (2000)

    Google Scholar 

  11. Provost, F., Fawcett, T.: Robust classification for imprecise environments. Mach. Learn. 42(3), 203–231 (2001)

    Article  Google Scholar 

  12. Przymusinski, T.: On the declarative semantics of stratified deductive databases and logic programs. In: Foundations of Deductive Databases and Logic Programming. Morgan (1987)

    Google Scholar 

  13. Ray, C., Dréo, R., Camossi, E., Jousselme, A.L., Iphar, C.: Heterogeneous integrated dataset for maritime intelligence, surveillance, and reconnaissance. Data Brief (2019, in Press). https://doi.org/10.1016/j.dib.2019.104141

    Article  Google Scholar 

  14. Riveiro, M., Falkman, G.: Supporting the analytical reasoning process in maritime anomaly detection: evaluation and experimental design. In: 2010 14th International Conference Information Visualisation, pp. 170–178. IEEE (2010)

    Google Scholar 

  15. Roy, J., Davenport, M.: Exploitation of maritime domain ontologies for anomaly detection and threat analysis. In: Proceedings of the IEEE international Waterside Security Conference (WSS) (2010)

    Google Scholar 

  16. Rubin, D.B.: Inference and missing data. Biometrika 63(3), 581–592 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported by project datAcron, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 687591. The authors wish to thank the NATO Allied Command Transformation (NATO-ACT) for supporting the CMRE project on Data Knowledge and Operational Effectiveness (DKOE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maximilian Zocholl , Manolis Pitsikalis , Anne-Laure Jousselme , Alexander Artikis or Cyril Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zocholl, M., Iphar, C., Pitsikalis, M., Jousselme, AL., Artikis, A., Ray, C. (2019). Evaluation of Maritime Event Detection Against Missing Data. In: Piattini, M., Rupino da Cunha, P., García Rodríguez de Guzmán, I., Pérez-Castillo, R. (eds) Quality of Information and Communications Technology. QUATIC 2019. Communications in Computer and Information Science, vol 1010. Springer, Cham. https://doi.org/10.1007/978-3-030-29238-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29238-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29237-9

  • Online ISBN: 978-3-030-29238-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics