Abstract
We present a prototype of a neurally-guided automatic theorem prover for first-order logic with equality. The prototype uses a neural network trained on previous proof search attempts to evaluate subgoals based directly on their structure, and hence bias proof search toward success. An existing first-order theorem prover is employed to dispatch easy subgoals and prune branches which cannot be solved. Exploration of the search space is asynchronous with respect to both the evaluation network and the existing prover, allowing for efficient batched neural network execution and for natural parallelism within the prover. Evaluation on the MPTP dataset shows that the prover can improve with learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Learning to Reason with Neural Architectures. Lerna is also the lair of the mythical many-headed beast Hydra. Source code available at https://github.com/MichaelRawson/lerna.
- 2.
- 3.
NVIDIA® GeForce® GT 730.
- 4.
Intel® Core™ i7-6700 CPU @ 3.40 GHz, 16 GB RAM.
- 5.
References
Barendregt, H.P., et al.: The Lambda Calculus. North-Holland, Amsterdam (1984)
Bowman, S.R., Potts, C., Manning, C.D.: Recursive neural networks can learn logical semantics. arXiv preprint arXiv:1406.1827 (2014)
Bridge, J.P., Holden, S.B., Paulson, L.C.: Machine learning for first-order theorem proving. J. Autom. Reason. 53(2), 141–172 (2014)
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)
Deters, M., Reynolds, A., King, T., Barrett, C.W., Tinelli, C.: A tour of CVC4: how it works, and how to use it. In: Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, 21–24 October 2014, p. 7 (2014)
Evans, R., Saxton, D., Amos, D., Kohli, P., Grefenstette, E.: Can neural networks understand logical entailment? arXiv preprint arXiv:1802.08535 (2018)
Färber, M., Kaliszyk, C., Urban, J.: Monte Carlo connection prover. arXiv preprint arXiv:1611.05990 (2016)
Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)
Gao, H., Ji, S.: Graph U-Net (2018). Preprint: https://openreview.net/forum?id=HJePRoAct7
Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_25
Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized Reason. 3(2), 153–245 (2010)
Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, Upper Saddle River (1994)
Irving, G., Szegedy, C., Alemi, A.A., Een, N., Chollet, F., Urban, J.: DeepMath – deep sequence models for premise selection. In: Advances in Neural Information Processing Systems, pp. 2235–2243 (2016)
Jakubův, J., Urban, J.: ENIGMA: efficient learning-based inference guiding machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62075-6_20
Kaliszyk, C., Urban, J.: FEMaLeCoP: fairly efficient machine learning connection prover. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 88–96. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7_7
Kaliszyk, C., Urban, J., Michalewski, H., Olšák, M.: Reinforcement learning of theorem proving. In: Advances in Neural Information Processing Systems, pp. 8822–8833 (2018)
Kinyon, M., Veroff, R., Vojtěchovský, P.: Loops with Abelian inner mapping groups: an application of automated deduction. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS (LNAI), vol. 7788, pp. 151–164. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36675-8_8
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Komendantskaya, E., Heras, J.: Proof mining with dependent types. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 303–318. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62075-6_21
Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_24
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning for sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2_6
Kühlwein, D., Schulz, S., Urban, J.: E-MaLeS 1.1. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 407–413. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_28
Kühlwein, D., Urban, J.: MaLeS: a framework for automatic tuning of automated theorem provers. J. Autom. Reason. 55(2), 91–116 (2015)
Loos, S., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search. arXiv preprint arXiv:1701.06972 (2017)
Otten, J.: A non-clausal connection calculus. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 226–241. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22119-4_18
Otten, J.: nanoCoP: A non-clausal connection prover. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 302–312. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1_21
Paszke, A., et al.: Automatic differentiation in PyTorch (2017)
Rawson, M., Reger, G.: Dynamic strategy priority: empower the strong and abandon the weak. In: AITP 2018 (2018)
Rawson, M., Reger, G.: Towards an efficient architecture for intelligent theorem provers. In: AITP 2019 (2019)
Reger, G., Suda, M., Voronkov, A.: The challenges of evaluating a new feature in Vampire. In: Vampire Workshop, pp. 70–74 (2014)
Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Commun. 15(2, 3), 91–110 (2002)
Riazanov, A., Voronkov, A.: Limited resource strategy in resolution theorem proving. J. Symb. Comput. 36(1–2), 101–115 (2003)
Robinson, A.J., Voronkov, A.: Handbook of Automated Reasoning, vol. 1. Gulf Professional Publishing, Houston (2001)
Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38
Schulz, S.: E - A brainiac theorem prover. AI Commun. 15(2, 3), 111–126 (2002)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Sun, Y., Wong, A.K., Kamel, M.S.: Classification of imbalanced data: a review. Int. J. Pattern Recogn. Artif. Intell. 23(04), 687–719 (2009)
Sutcliffe, G., Melville, S.: The practice of clausification in automatic theorem proving (1996)
Suttner, C.B., Schumann, J.: Parallel automated theorem proving. Mach. Intell. Pattern Recogn. 14, 209–257 (1994). Elsevier
Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom. Reason. 37(1–2), 21–43 (2006)
Urban, J.: MaLARea: a metasystem for automated reasoning in large theories. In: ESARLT, vol. 257 (2007)
Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP machine learning connection prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22119-4_21
Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for theorem proving by deep graph embedding. In: Advances in Neural Information Processing Systems, pp. 2786–2796 (2017)
Acknowledgements
The authors wish to thank Josef Urban and his group in ČVUT, Prague for their help and encouragement with early iterations of this work, and for supplying the Mizar dataset used in this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Rawson, M., Reger, G. (2019). A Neurally-Guided, Parallel Theorem Prover. In: Herzig, A., Popescu, A. (eds) Frontiers of Combining Systems. FroCoS 2019. Lecture Notes in Computer Science(), vol 11715. Springer, Cham. https://doi.org/10.1007/978-3-030-29007-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-29007-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29006-1
Online ISBN: 978-3-030-29007-8
eBook Packages: Computer ScienceComputer Science (R0)