Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Neurally-Guided, Parallel Theorem Prover

  • Conference paper
  • First Online:
Frontiers of Combining Systems (FroCoS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11715))

Included in the following conference series:

Abstract

We present a prototype of a neurally-guided automatic theorem prover for first-order logic with equality. The prototype uses a neural network trained on previous proof search attempts to evaluate subgoals based directly on their structure, and hence bias proof search toward success. An existing first-order theorem prover is employed to dispatch easy subgoals and prune branches which cannot be solved. Exploration of the search space is asynchronous with respect to both the evaluation network and the existing prover, allowing for efficient batched neural network execution and for natural parallelism within the prover. Evaluation on the MPTP dataset shows that the prover can improve with learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Learning to Reason with Neural Architectures. Lerna is also the lair of the mythical many-headed beast Hydra. Source code available at https://github.com/MichaelRawson/lerna.

  2. 2.

    https://github.com/JUrban/deepmath/blob/master/M2k_list.

  3. 3.

    NVIDIA® GeForce® GT 730.

  4. 4.

    Intel® Core i7-6700 CPU @ 3.40 GHz, 16 GB RAM.

  5. 5.

    https://rusty1s.github.io/pytorch_geometric/build/html/modules/nn.html.

References

  1. Barendregt, H.P., et al.: The Lambda Calculus. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  2. Bowman, S.R., Potts, C., Manning, C.D.: Recursive neural networks can learn logical semantics. arXiv preprint arXiv:1406.1827 (2014)

  3. Bridge, J.P., Holden, S.B., Paulson, L.C.: Machine learning for first-order theorem proving. J. Autom. Reason. 53(2), 141–172 (2014)

    Article  Google Scholar 

  4. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  5. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  6. Deters, M., Reynolds, A., King, T., Barrett, C.W., Tinelli, C.: A tour of CVC4: how it works, and how to use it. In: Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, 21–24 October 2014, p. 7 (2014)

    Google Scholar 

  7. Evans, R., Saxton, D., Amos, D., Kohli, P., Grefenstette, E.: Can neural networks understand logical entailment? arXiv preprint arXiv:1802.08535 (2018)

  8. Färber, M., Kaliszyk, C., Urban, J.: Monte Carlo connection prover. arXiv preprint arXiv:1611.05990 (2016)

  9. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  10. Gao, H., Ji, S.: Graph U-Net (2018). Preprint: https://openreview.net/forum?id=HJePRoAct7

  11. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_25

    Chapter  Google Scholar 

  12. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized Reason. 3(2), 153–245 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, Upper Saddle River (1994)

    MATH  Google Scholar 

  14. Irving, G., Szegedy, C., Alemi, A.A., Een, N., Chollet, F., Urban, J.: DeepMath – deep sequence models for premise selection. In: Advances in Neural Information Processing Systems, pp. 2235–2243 (2016)

    Google Scholar 

  15. Jakubův, J., Urban, J.: ENIGMA: efficient learning-based inference guiding machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62075-6_20

    Chapter  Google Scholar 

  16. Kaliszyk, C., Urban, J.: FEMaLeCoP: fairly efficient machine learning connection prover. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 88–96. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7_7

    Chapter  Google Scholar 

  17. Kaliszyk, C., Urban, J., Michalewski, H., Olšák, M.: Reinforcement learning of theorem proving. In: Advances in Neural Information Processing Systems, pp. 8822–8833 (2018)

    Google Scholar 

  18. Kinyon, M., Veroff, R., Vojtěchovský, P.: Loops with Abelian inner mapping groups: an application of automated deduction. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS (LNAI), vol. 7788, pp. 151–164. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36675-8_8

    Chapter  MATH  Google Scholar 

  19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  20. Komendantskaya, E., Heras, J.: Proof mining with dependent types. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 303–318. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62075-6_21

    Chapter  Google Scholar 

  21. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_24

    Chapter  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  23. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning for sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2_6

    Chapter  Google Scholar 

  24. Kühlwein, D., Schulz, S., Urban, J.: E-MaLeS 1.1. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 407–413. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_28

    Chapter  Google Scholar 

  25. Kühlwein, D., Urban, J.: MaLeS: a framework for automatic tuning of automated theorem provers. J. Autom. Reason. 55(2), 91–116 (2015)

    Article  MathSciNet  Google Scholar 

  26. Loos, S., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search. arXiv preprint arXiv:1701.06972 (2017)

  27. Otten, J.: A non-clausal connection calculus. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 226–241. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22119-4_18

    Chapter  Google Scholar 

  28. Otten, J.: nanoCoP: A non-clausal connection prover. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 302–312. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1_21

    Chapter  Google Scholar 

  29. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  30. Rawson, M., Reger, G.: Dynamic strategy priority: empower the strong and abandon the weak. In: AITP 2018 (2018)

    Google Scholar 

  31. Rawson, M., Reger, G.: Towards an efficient architecture for intelligent theorem provers. In: AITP 2019 (2019)

    Google Scholar 

  32. Reger, G., Suda, M., Voronkov, A.: The challenges of evaluating a new feature in Vampire. In: Vampire Workshop, pp. 70–74 (2014)

    Google Scholar 

  33. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Commun. 15(2, 3), 91–110 (2002)

    MATH  Google Scholar 

  34. Riazanov, A., Voronkov, A.: Limited resource strategy in resolution theorem proving. J. Symb. Comput. 36(1–2), 101–115 (2003)

    Article  MathSciNet  Google Scholar 

  35. Robinson, A.J., Voronkov, A.: Handbook of Automated Reasoning, vol. 1. Gulf Professional Publishing, Houston (2001)

    MATH  Google Scholar 

  36. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  37. Schulz, S.: E - A brainiac theorem prover. AI Commun. 15(2, 3), 111–126 (2002)

    MATH  Google Scholar 

  38. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Sun, Y., Wong, A.K., Kamel, M.S.: Classification of imbalanced data: a review. Int. J. Pattern Recogn. Artif. Intell. 23(04), 687–719 (2009)

    Article  Google Scholar 

  40. Sutcliffe, G., Melville, S.: The practice of clausification in automatic theorem proving (1996)

    Google Scholar 

  41. Suttner, C.B., Schumann, J.: Parallel automated theorem proving. Mach. Intell. Pattern Recogn. 14, 209–257 (1994). Elsevier

    Article  Google Scholar 

  42. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom. Reason. 37(1–2), 21–43 (2006)

    MATH  Google Scholar 

  43. Urban, J.: MaLARea: a metasystem for automated reasoning in large theories. In: ESARLT, vol. 257 (2007)

    Google Scholar 

  44. Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP machine learning connection prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22119-4_21

    Chapter  Google Scholar 

  45. Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for theorem proving by deep graph embedding. In: Advances in Neural Information Processing Systems, pp. 2786–2796 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Josef Urban and his group in ČVUT, Prague for their help and encouragement with early iterations of this work, and for supplying the Mizar dataset used in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rawson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rawson, M., Reger, G. (2019). A Neurally-Guided, Parallel Theorem Prover. In: Herzig, A., Popescu, A. (eds) Frontiers of Combining Systems. FroCoS 2019. Lecture Notes in Computer Science(), vol 11715. Springer, Cham. https://doi.org/10.1007/978-3-030-29007-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29007-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29006-1

  • Online ISBN: 978-3-030-29007-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics