Abstract
According to one of the base definitions of an ontology, this representation of knowledge can be understood as a formal specification of conceptualization. In other words - they can be treated as a set of well-defined concepts, which represent classes of objects from the real world, along with relationships that hold between them. In the context of distributed information systems, it cannot be expected that all of the interacting systems can use one, shared ontology. It entails a plethora of difficulties related to maintaining such a large knowledge structure. A solution for this problem is called an ontology alignment, sometimes it is also referred to as an ontology mapping. It is a task of designating similar fragments of ontologies, that represent the same elements of their domain. This allows different components of a distributed infrastructure to preserve its own independent ontology while asserting mutual interoperability. However, when one of the participating ontologies change over time, the designated alignment may become stale and invalid. As easily seen in a plethora of methods found in the literature, aligning ontologies is a complex task. It may become very demanding not only in terms of its computational complexity. Thus relaunching it from the beginning may not be acceptable. In this paper, we propose a set of algorithms capable of updating a pre-designated alignment of ontologies based solely on the analysis of changes applied during their evolution, without the necessity of relaunching the mapping algorithms from scratch.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allocca, C., d’Aquin, M., Motta, E.: Detecting different versions of ontologies in large ontology repositories. In: Proceedings of IWOD 2009, Washington, D.C., USA (2009)
An, Y., Topaloglou, T.: Maintaining semantic mappings between database schemas and ontologies. In: Christophides, V., Collard, M., Gutierrez, C. (eds.) ODBIS/SWDB -2007. LNCS, vol. 5005, pp. 138–152. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70960-2_8
David, J., Euzenat, J., Scharffe, F., Trojahn dos Santos, C.: The alignment API 4.0. Semant. Web 2((1), 3–10 (2011)
Dinh, D., Dos Reis, J.C., Pruski, C., Da Silveira, M., Reynaud-Delaître, C.: Identifying relevant concept attributes to support mapping maintenance under ontology evolution. Web Semant. Sci. Serv. Agents World Wide Web 29, 53–66 (2014)
Euzenat, J., Mocan, A., Scharffe, F.: Ontology alignments. In: Hepp, M., De Leenheer, P., De Moor, A., Sure, Y. (eds.) Ontology Management. Computing for Human Experience, vol. 7, pp. 177–206. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-69900-4_6
Grandi, F.: Multi-temporal RDF ontology versioning. In: Proceedings of IWOD 2009, Washington, D.C., USA (2009)
Hartung, M., Groß, A., Rahm, E.: Conto-diff: generation of complex evolution mappings for life science ontologies. J. Biomed. Inform. 46(1), 15–32 (2013)
Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: logic-based and scalable ontology matching. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 273–288. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_18
Khattak, A.M., et al.: Mapping evolution of dynamic web ontologies. Inform. Sci. 303, 101–119 (2015). https://doi.org/10.1016/j.ins.2014.12.040
Klein, M., Fensel, D., Kiryakov, A., Ognyanov, D.: Ontology versioning and change detection on the web. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 197–212. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45810-7_20
Kondylakis, H., Flouris, G., Plexousakis, D.: Ontology and schema evolution in data integration: review and assessment. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS, vol. 5871, pp. 932–947. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05151-7_14
Kozierkiewicz, A., Pietranik, M.: The knowledge increase estimation framework for integration of ontology instances’ relations. In: Lupeikiene, A., Vasilecas, O., Dzemyda, G. (eds.) DB&IS 2018. Communications in Computer and Information Science, vol. 838, pp. 172–186. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97571-9_15
Kozierkiewicz, A., Pietranik, M.: A formal framework for the ontology evolution. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11431, pp. 16–27. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14799-0_2
Lembo, D., Rosati, R., Santarelli, V., Savo, D.F., Thorstensen, E.: Mapping repair in ontology-based data access evolving systems. In: IJCAI International Joint Conference on Artificial Intelligence, pp. 1160–1166 (2017)
Martins, H., Silva, N.: A user-driven and a semantic-based ontology mapping evolution approach. In: ICEIS, vol. 1, pp. 214–221 (2009)
Noy, N.F., Musen, M.A.: The PROMPT suite: interactive tools for ontology merging and mapping. Int. J. Hum.-Comput. Stud. 6(59), 983–1024 (2003)
Papavassiliou V., Flouris G., Fundulaki I., Kotzinos D., Christophides V.: High-level change detection in RDF(S) KBs. ACM Trans. Database Syst. 38(1), 1–42 (2013)
Pietranik, M., Nguyen, N.T.: A Multi-atrribute based framework for ontology aligning. Neurocomputing 146, 276–290 (2014). https://doi.org/10.1016/j.neucom.2014.03.067
Pietranik, M., Nguyen, N.T.: Framework for ontology evolution based on a multi-attribute alignment method. In: CYBCONF 2015, pp. 108–112 (2015). https://doi.org/10.1109/CYBConf.2015.7175915
Sassi, N., Jaziri, W., Gargouri, F.: Z-based formalization of kits of changes to maintain ontology consistency. In: Proceedings of KEOD 2009, pp. 388–391 (2009)
Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp. 1164–1182. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88873-4_18
Shvaiko, P., Euzenat, J., Jiménez-Ruiz, E., Cheatham, M., Hassanzadeh, O.: Proceedings of the 13th International Workshop on Ontology Matching Co-located with the 17th International Semantic Web Conference, OM@ISWC 2018, Monterey, CA, USA, 8 October 2018, CEUR Workshop Proceedings, vol. 2288 (2018). CEUR-WS.org
Thenmozhi, M., Vivekanandan, K.: A semi-automatic approach to update mapping for ontology evolution. In: Proceedings of International Conference on Computational Intelligence and Information Technology, CIIT, pp. 319–324 (2012)
Acknowledgement
This research project was supported by grant No. 2017/26/D/ST6/00251 from the National Science Centre, Poland.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kozierkiewicz, A., Pietranik, M. (2019). Updating Ontology Alignment on the Concept Level Based on Ontology Evolution. In: Welzer, T., Eder, J., Podgorelec, V., Kamišalić Latifić, A. (eds) Advances in Databases and Information Systems. ADBIS 2019. Lecture Notes in Computer Science(), vol 11695. Springer, Cham. https://doi.org/10.1007/978-3-030-28730-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-28730-6_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-28729-0
Online ISBN: 978-3-030-28730-6
eBook Packages: Computer ScienceComputer Science (R0)