Nothing Special   »   [go: up one dir, main page]

Skip to main content

Caging and Path Non-existence: A Deterministic Sampling-Based Verification Algorithm

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

Abstract

Caging restricts the mobility of an object without necessarily immobilizing it completely. The object is caged if it cannot move arbitrarily far from its initial position. Apart from its common applications to grasping and manipulation, caging can also be considered as a problem dual to motion planning: an object is caged when it is isolated within a bounded connected component of its configuration space and is disconnected from the rest of the latter. In this paper, we address the problem of caging and path non-existence verification in 2D and 3D workspaces by representing a subset of the collision space as a simplicial complex and analyzing the connectivity of its complement. Since configuration spaces of 2D and 3D rigid objects are three-dimensional and six-dimensional respectively, it is computationally expensive to reconstruct them explicitly. Thus, we represent the object’s collision space as a union of a finite set of ‘slices’, corresponding to small intervals of the object’s orientation coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    By distance here we mean Euclidean distance in \(\mathbb {R}^d\).

  2. 2.

    Here \({\text {Pr}}_{\mathbb {R}^d}(.)\) and \({\text {Pr}}_{SO(d)}(.)\) denote the projections to \(\mathbb {R}^d\) and SO(d) respectively, and \({\text {Im}}(\gamma )\) denotes the image of \(\gamma \) in SO(d).

References

  1. Barraquand, J., Kavraki, L., Latombe, J.-C., Motwani, R., Li, T.-Y., Raghavan, P.: A random sampling scheme for path planning. Int. J. Robot. Res. 16(6), 759–774 (1997)

    Article  Google Scholar 

  2. Basch, J., Guibas, L.J., Hsu, D., Nguyen, A.T.: Disconnection proofs for motion planning. In: IEEE International Conference on Robotics and Automation, pp. 1765–1772 (2001)

    Google Scholar 

  3. Edelsbrunner, H.: Weighted alpha shapes. University of Illinois at Urbana-Champaign, Department of Computer Science, Champaign, IL, USA (1992)

    Google Scholar 

  4. Edelsbrunner, H., Harer, J.: Computational topology: an introduction. American Mathematical Society (2010)

    Google Scholar 

  5. Kuperberg, W.: Problems on polytopes and convex sets. In: DIMACS Workshop on Polytopes, pp. 584–589 (1990)

    Google Scholar 

  6. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell, MA, USA (1991)

    Book  Google Scholar 

  7. Mahler, J., Pokorny, F.T., McCarthy, Z., van der Stappen, A.F., Goldberg, K.: Energy-bounded caging: formal definition and 2-D energy lower bound algorithm based on weighted alpha shapes. IEEE Robot. Autom. Lett. 1(1), 508–515 (2016)

    Article  Google Scholar 

  8. Makita, S., Maeda, Y.: 3D multifingered caging: basic formulation and planning. In: IEEE Intelligent Robots and Systems, pp. 2697–2702 (2008)

    Google Scholar 

  9. Makita, S., Okita, K., Maeda, Y.: 3D two-fingered caging for two types of objects: sufficient conditions and planning. Int. J. Mechatron. Autom. 3(4), 263–277 (2013)

    Article  Google Scholar 

  10. McCarthy, Z., Bretl, T., Hutchinson, S.: Proving path non-existence using sampling and alpha shapes. In: IEEE International Conference on Robotics and Automation, pp. 2563–2569 (2012)

    Google Scholar 

  11. Pereira, G.A.S., Campos, M.F.M., Kumar, V.: Decentralized algorithms for multi-robot manipulation via caging. Int. J. Robot. Res. 23(7–8), 783–795 (2004)

    Article  Google Scholar 

  12. Pipattanasomporn, P., Sudsang, A.: Two-finger caging of concave polygon. In: IEEE International Conference on Robotics and Automation, pp. 2137–2142 (2006)

    Google Scholar 

  13. Pipattanasomporn, P., Sudsang, A.: Two-finger caging of nonconvex polytopes. IEEE Trans. Robot. 27(2), 324–333 (2011)

    Article  Google Scholar 

  14. Pokorny, F.T., Stork, J.A., Kragic, D.: Grasping objects with holes: a topological approach. In: IEEE International Conference on Robotics and Automation, pp. 1100–1107 (2013)

    Google Scholar 

  15. Ratliff, N., Zucker, M., Bagnell, J.A., Srinivasa, S.: CHOMP: gradient optimization techniques for efficient motion planning. In: IEEE International Conference on Robotics and Automation, pp. 489–494 (2009)

    Google Scholar 

  16. Rimon, E., Blake, A.: Caging planar bodies by one-parameter two-fingered gripping systems. Int. J. Robot. Res. 18(3), 299–318 (1999)

    Article  Google Scholar 

  17. Rodriguez, A., Mason, M.T., Ferry, S.: From caging to grasping. Int. J. Robot. Res. 31(7), 886–900 (2012)

    Article  Google Scholar 

  18. Stork, J.A., Pokorny, F.T., Kragic, D.: A topology-based object representation for clasping, latching and hooking. In: IEEE-RAS International Conference on Humanoid Robots, pp. 138–145 (2013)

    Google Scholar 

  19. Stork, J.A., Pokorny, F.T., Kragic, D.: Integrated motion and clasp planning with virtual linking. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3007–3014 (2013)

    Google Scholar 

  20. Varava, A., Kragic, D., Pokorny, F.T.: Caging grasps of rigid and partially deformable 3-D objects with double fork and neck features. IEEE Trans. Robot. 32(6), 1479–1497 (2016)

    Article  Google Scholar 

  21. Varava, A., Carvalho, J.F., Kragic, D., Pokorny, F.T.: A decomposition-based approach to reasoning about free space path-connectivity for rigid objects in 2D (2017). arXiv:1710.10089 [cs.RO]

  22. Vahedi, M., van der Stappen, A.F.: Caging polygons with two and three fingers. Int. J. Robot. Res. 27(11–12), 1308–1324 (2008)

    Article  Google Scholar 

  23. Zhang, L., Young, J.K., Manocha, D.: Efficient cell labelling and path non-existence computation using C-obstacle query. Int. J. Robot. Res. 27(11–12), 1246–1257 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasiia Varava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varava, A., Carvalho, J.F., Pokorny, F.T., Kragic, D. (2020). Caging and Path Non-existence: A Deterministic Sampling-Based Verification Algorithm. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_43

Download citation

Publish with us

Policies and ethics