Nothing Special   »   [go: up one dir, main page]

Skip to main content

Topometric Localization with Deep Learning

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

Abstract

Compared to LiDAR-based localization methods, which provide high accuracy but rely on expensive sensors, visual localization approaches only require a camera and thus are more cost-effective however their accuracy and reliability is typically inferior to LiDAR-based methods. In this work, we propose a vision-based localization approach that learns from LiDAR-based localization methods by using their output as training data, thus combining a cheap, passive sensor with an accuracy that is on-par with LiDAR-based localization. The approach consists of two deep networks trained on visual odometry and topological localization, respectively, and a successive optimization to combine the predictions of these two networks. Furthermore, we introduce a new challenging pedestrian-based dataset for localization with a high degree of noise. Results obtained by evaluating the proposed approach on this novel dataset demonstrate localization errors up to 10 times smaller than those obtained with traditional vision-based localization methods.

G. L. Oliveira and N. Radwan—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., Agarwal, A., Barham, P., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems (2016). arXiv:1603.04467

  2. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  3. Arroyo, R., Alcantarilla, P.F., Bergasa, L.M., Romera, E.: Fusion and binarization of CNN features for robust topological localization across seasons. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2016)

    Google Scholar 

  4. Badino, H., Huber, D., Kanade, T.: Visual topometric localization. In: IEEE Intelligent Vehicles Symposium (IV) (2011)

    Google Scholar 

  5. Chen, Z., Lam, O., Jacobson, A., Milford, M.: Convolutional neural network-based place recognition (2014). arXiv:1411.1509

  6. Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74(368), 829–836 (1979)

    Article  MathSciNet  Google Scholar 

  7. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus) (2015). arXiv:1511.07289

  8. Garcia-Fidalgo, E., Ortiz, A.: Vision-based topological mapping and localization methods: a survey. Robot. Auton. Syst. 64, 1–20 (2015)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, R., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  10. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks (2016). arXiv:1608.06993

  11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015). arXiv:1502.03167

  12. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  13. Kaiming, H., Xiangyu, Z., Shaoqing, R., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: European Conference on Computer Vision (2014)

    Google Scholar 

  14. Kendall, A., Grimes, M., Cipolla, R.: Posenet: a convolutional network for real-time 6-dof camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  15. Kingma, D., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv:1412.6980

  16. Konda, K., Memisevic, R.: Learning visual odometry with a convolutional network. In: Proceedings of the 10th International Conference on Computer Vision Theory and Applications (2015)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  18. Kümmerle, R., Ruhnke, M., Steder, B., Stachniss, C., Burgard, W.: Autonomous robot navigation in highly populated pedestrian zones. J. Field Robot. 32(4), 565–589 (2015)

    Article  Google Scholar 

  19. Lowry, S., Sünderhauf, N., Newman, P., Leonard, J., Cox, D., Corke, P., Milford, M.J.: Visual place recognition: a survey. IEEE Trans. Robot. 32(1), 1–19 (2016)

    Article  Google Scholar 

  20. Mazuran, M., Boniardi, F., Burgard, W., Tipaldi, G.D.: Relative topometric localization in globally inconsistent maps. In: Proceedings of the International Symposium on Robotics Research (2015)

    Google Scholar 

  21. Melekhov, I., Kannala, J., Rahtu, E.: Relative camera pose estimation using convolutional neural networks (2017). arXiv:1702.01381

  22. Mohanty, V., Agrawal, S., et al.: DeepVO: a deep learning approach for monocular visual odometry (2016). arXiv:1611.06069

  23. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the International Conference on Machine Learning (2010)

    Google Scholar 

  24. Nicolai, A., Skeele, R., Eriksen, C., Hollinger, G.A.: Deep learning for laser based odometry estimation. In: RSS Workshop Limits and Potentials of Deep Learning in Robotics (2016)

    Google Scholar 

  25. Sprunk, C., Tipaldi, G.D., Cherubini, A., Burgard, W.: Lidar-based teach-and-repeat of mobile robot trajectories. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)

    Google Scholar 

  26. Sutskever, I., Martens, J., Dahl, G.E., Hinton, G.E.: On the importance of initialization and momentum in deep learning. In: Proceedings of the International Conference on Machine Learning (2013)

    Google Scholar 

  27. Wu, J., Ma, L., Hu, X.: Delving deeper into convolutional neural networks for camera relocalization. In: Proceedings of the IEEE International Conference on Robotics and Automation (2017)

    Google Scholar 

  28. Zhou, B., Khosla, A., Lapedriza, A., Torralba, A., Oliva, A.: Places: an image database for deep scene understanding (2016). arXiv:1610.02055

Download references

Acknowledgements

This work has been partially supported by the European Commission under the grant numbers H2020-645403-ROBDREAM, ERC-StG-PE7-279401-VideoLearn, the Freiburg Graduate School of Robotics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel L. Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira, G.L., Radwan, N., Burgard, W., Brox, T. (2020). Topometric Localization with Deep Learning. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_38

Download citation

Publish with us

Policies and ethics