Nothing Special   »   [go: up one dir, main page]

Skip to main content

Viewing Robot Navigation in Human Environment as a Cooperative Activity

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

  • 3130 Accesses

Abstract

We claim that navigation in human environments can be viewed as cooperative activity especially in constrained situations. Humans concurrently aid and comply with each other while moving in a shared space. Cooperation helps pedestrians to efficiently reach their own goals and respect conventions such as the personal space of others. To meet human comparable efficiency, a robot needs to predict the human trajectories and plan its own trajectory correspondingly in the same shared space. In this work, we present a navigation planner that is able to plan such cooperative trajectories, simultaneously enforcing the robot’s kinematic constraints and avoiding other non-human dynamic obstacles. Using robust social constraints of projected time to a possible future collision, compatibility of human-robot motion direction, and proxemics, our planner is able to replicate human-like navigation behavior not only in open spaces but also in confined areas. Besides adapting the robot trajectory, the planner is also able to proactively propose co-navigation solutions by jointly computing human and robot trajectories within the same optimization framework. We demonstrate richness and performance of the cooperative planner with simulated and real world experiments on multiple interactive navigation scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://wiki.ros.org/Robots/PR2.

  2. 2.

    https://www.openrobots.org/wiki/morse.

  3. 3.

    https://www.ald.softbankrobotics.com/en/pepper.

  4. 4.

    Source code for the cooperative planner is available at https://github.com/harmishhk/lateb_local_planner.

  5. 5.

    http://www.optitrack.com/.

  6. 6.

    Although the motion capture system delivers data at higher frequency (about 100 Hz), we apply a moving average filter and re-sample the filtered data at 10 Hz to have better estimate of velocities.

References

  1. Sebanz, N., Bekkering, H., Knoblich, G.: Joint action: bodies and minds moving together. Trends Cogn. Sci. 10(2), 70–76 (2006)

    Article  Google Scholar 

  2. Lemaignan, S., Warnier, M., Sisbot, E.A., Clodic, A., Alami, R.: Artificial cognition for social human-robot interaction: an implementation. Artif. Intell. 247 (2017)

    Google Scholar 

  3. Waldhart, J., Gharbi, M., Alami, R.: Planning handovers involving humans and robots in constrained environment. In: International Conference on Intelligent Robots and Systems (2015)

    Google Scholar 

  4. Shah, J., Wiken, J., Williams, B.C., Breazeal, C.: Improved human-robot team performance using chaski, a human-inspired plan execution system. In: International Conference on Human-Robot Interaction, pp. 29–36 (2011)

    Google Scholar 

  5. Knoblich, G., Butterfill, S., Sebanz, N.: Psychological research on joint action. Psychol. Learn. Motiv. 54, 59–101 (2011)

    Article  Google Scholar 

  6. Pacherie, E.: The phenomenology of joint action: self-agency vs. joint-agency. In: Axel, S. (ed.) Joint Attention: New Developments (2012)

    Google Scholar 

  7. Clodic, A., Alami, R., Chatila, R.: Key elements for human-robot joint action. Sociable Robots and the Future of Social Relations, vol. 273, pp. 23–33 (2014)

    Google Scholar 

  8. Tomasello, M., Carpenter, M., Call, J., Behne, T., Moll, H.: Understanding and sharing intentions: the origins of cultural cognition. Behav. Brain Sci. 28 (2005)

    Google Scholar 

  9. Bratman, M.E.: Shared intention. Ethics 104(1), 97–113 (1993)

    Article  Google Scholar 

  10. Clark, H.H., Schreuder, R., Buttrick, S.: Common ground at the understanding of demonstrative reference. J. Verbal Learn. Verbal Behav. 22, pp. 245–258 (1983)

    Google Scholar 

  11. Watanabe, A., Ikeda, T., Morales, Y., Shinozawa, K., Miyashita, T., Hagita, N.: Communicating robotic navigational intentions. In: International Conference on Intelligent Robots and Systems, pp. 5763–5769 (2015)

    Google Scholar 

  12. Hall, E.T.: The Hidden Dimension: Man’s Use of Space in Public and Private (1966)

    Google Scholar 

  13. Rios-Martinez, J., Spalanzani, A., Laugier, C.: From proxemics theory to socially-aware navigation: a survey. Int. J. Soc. Robot. 7(2), 137–153 (2014)

    Article  Google Scholar 

  14. Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: a survey. Robot. Auton. Syst. 61(12), 1726–1743 (2013)

    Article  Google Scholar 

  15. Sisbot, E.A., Marin-Urias, L.F., Alami, R., Siméon, T.: A human aware mobile robot motion planner. IEEE Trans. Robot. 23(5), 874–883 (2007)

    Article  Google Scholar 

  16. Kruse, T., Kirsch, A., Khambhaita, H., Alami, R.: Evaluating directional cost models in navigation. In: International Conference on Human-Robot Interaction, pp. 350–357 (2014)

    Google Scholar 

  17. Kruse, T., Basili, P., Glasauer, S., Kirsch, A.: Legible robot navigation in the proximity of moving humans. In: Workshop on Advanced Robotics and Its Social Impacts, pp. 83–88 (2012)

    Google Scholar 

  18. Kuderer, M., Kretzschmar, H., Sprunk, C., Burgard, W.: Feature-based prediction of trajectories for socially compliant navigation. In: Robotics: Science and Systems (2012)

    Google Scholar 

  19. Ferrer, G., Sanfeliu, A.: Proactive kinodynamic planning using the extended social force model and human motion prediction in urban environments. In: International Conference on Intelligent Robots and Systems, pp. 1730–1735 (2014)

    Google Scholar 

  20. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)

    Article  Google Scholar 

  21. Alili, S., Alami, R., Montreuil, V.: A task planner for an autonomous social robot. In: Asama, H., Kurokawa, H., Ota, J., Sekiyama, K. (eds.) Distributed Autonomous Robotic Systems, vol. 8, pp. 335–344 (2009)

    Google Scholar 

  22. Lallement, R., de Silva, L., Alami, R.: HATP: an HTN planner for robotics, CoRR, arXiv:abs/1405.5345 (2014)

  23. Mainprice, J., Gharbi, M., Siméon, T., Alami, R.: Sharing effort in planning human-robot handover tasks. In: International Symposium on Robot and Human Interactive Communication, pp. 764–770 (2012)

    Google Scholar 

  24. Ferrer, G., Sanfeliu, A.: Multi-objective cost-to-go functions on robot navigation in dynamic environments. In: International Conference on Intelligent Robots and Systems, pp. 3824–3829 (2015)

    Google Scholar 

  25. Bordallo, A., Previtali, F., Nardelli, N., Ramamoorthy, S.: Counterfactual reasoning about intent for interactive navigation in dynamic environments. In: International Conference on Intelligent Robots and Systems, pp. 2943–2950 (2015)

    Google Scholar 

  26. Nagariya, A., Gopalakrishnan, B., Singh, A.K., Gupta, K., Krishna, K.M.: Mobile robot navigation amidst humans with intents and uncertainties: a time scaled collision cone approach. In: Conference on Decision and Control, pp. 2773–2779 (2015)

    Google Scholar 

  27. Quinlan, S., Khatib, O.: Elastic bands: connecting path planning and control. In: International Conference on Robotics and Automation, pp. 802–807 (1993)

    Google Scholar 

  28. Khatib, M., Jaouni, H., Chatila, R., Laumond, J.-P.: Dynamic path modification for car-like nonholonomic mobile robots. In: International Conference on Robotics and Automation, pp. 2920–2925 (1997)

    Google Scholar 

  29. Rösmann, C., Feiten, W., Woesch, T., Hoffmann, F., Bertram, T.: Trajectory modification considering dynamic constraints of autonomous robots. In: German Conference on Robotics, pp. 1–6 (2012)

    Google Scholar 

  30. Khambhaita, H., Alami, R.: A human-robot cooperative navigation planner. In: Companion of the International Conference on Human-Robot Interaction, pp. 161–162 (2017)

    Google Scholar 

  31. Rösmann, C., Feiten, W., Wösch, T., Hoffmann, F., Bertram, T.: Efficient trajectory optimization using a sparse model. In: European Conference on Mobile Robots, pp. 138–143 (2013)

    Google Scholar 

  32. Bohannon, R.W.: Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing 26(1), 15–19 (1997)

    Article  Google Scholar 

  33. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige,K., Burgard, W.: G2o: a general framework for graph optimization. In: International Conference on Robotics and Automation, pp. 3607–3613 (2011)

    Google Scholar 

  34. Davis, T.: Direct Methods for Sparse Linear Systems (2006)

    Google Scholar 

  35. Karamouzas, I., Skinner, B., Guy, S.J.: Universal power law governing pedestrian interactions. Phys. Rev. Lett. 113(23), 238701 (2014)

    Article  Google Scholar 

  36. Marder-Eppstein, E.: move\(\_\)base: A ROS package that lets you move a robot to desired positions using the navigation stack

    Google Scholar 

  37. Lu, D.V., Hershberger, D., Smart, W.D.: Layered costmaps for context-sensitive navigation. In: International Conference on Intelligent Robots and Systems, pp. 709–715 (2014)

    Google Scholar 

  38. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)

    Article  Google Scholar 

  39. Khambhaita, H., Alami, R.: Assessing the social criteria for human-robot collaborative navigation: a comparison of human-aware navigation planners. In: International Symposium on Robot and Human Interactive Communication (2017)

    Google Scholar 

  40. Khambhaita, H., Rios-Martinez, J., Alami, R.: Head-body motion coordination for human aware robot navigation. In: International Workshop on Human-Friendlly Robotics (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 688147 (MuMMER project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harmish Khambhaita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khambhaita, H., Alami, R. (2020). Viewing Robot Navigation in Human Environment as a Cooperative Activity. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_25

Download citation

Publish with us

Policies and ethics