Nothing Special   »   [go: up one dir, main page]

Skip to main content

Controlling Homogeneous Microrobot Swarms In Vivo Using Rotating Magnetic Dipole Fields

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

Abstract

Future medical microrobots, which are likely to be simple microstructures with no actual computational intelligence on board, can be functionalized to perform targeted therapy in the body. In this paper, we describe how the properties of rotating magnetic dipole fields have the potential to enable in vivo swarm control for the popular class of magnetic microrobots that convert rotation into forward propulsion. The methods we describe can be used with swarms of batch-fabricated homogeneous microrobots, and do not require any localization information beyond what is realistically obtainable from medical images.

This work was supported by the National Science Foundation under awards #1435827 and #1650968.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We have developed a spherical-permanent-magnet robotic end-effector capable of continuous singularity-free rotation of the spherical magnet about any axis [17].

  2. 2.

    We show in [11] that the fields of cubic and certain cylindrical permanent magnets—which are easy to fabricate (and purchase in variety of sizes), fixture, and manipulate—are accurately approximated by the dipole model not far outside of their minimum bounding sphere.

  3. 3.

    We developed an electromagnetic source called the Omnimagnet, comprising three mutually orthogonal coils with a common soft-magnetic spherical core, all in a cubic package [12]. The Omnimagnet was optimized such that its field is accurately approximated by the dipole model just outside of its minimum bounding sphere.

  4. 4.

    We use the “hat” notation to describe unit-normalized vectors (e.g., \(\hat{\varvec{p}} \equiv \varvec{p}/\Vert \varvec{p}\Vert \)), as well as pointing-direction vectors that are inherently unit length (e.g., \({\hat{\varvec{\omega }}}\)).

References

  1. Abbott, J.J., Peyer, K.E., Cosentino Lagomarsino, M., Zhang, L., Dong, L., Kaliakatsos, I.K., Nelson, B.J.: How should microrobots swim? Int. J. Robot. Res. 28(11–12), 3663–3667 (2009)

    Google Scholar 

  2. Cheang, U.K., Lee, K., Julius, A.A., Kim, M.J.: Multiple-robot drug delivery strategy through coordinated teams of microswimmers. Appl. Phys. Lett. 105(8), 083705 (2014)

    Article  Google Scholar 

  3. Cheang, U.K., Meshkati, F., Kim, D., Kim, M.J., Fu, H.C.: Minimal geometric requirements for micropropulsion via magnetic rotation. Phys. Rev. E 90, 033007 (2014)

    Article  Google Scholar 

  4. Cheang, U.K., Meshkati, F., Kim, H., Lee, K., Fu, H.C., Kim, M.J.: Versatile microrobotics using simple modular subunits. Sci. Rep. 6, 30472 (2016)

    Article  Google Scholar 

  5. Chowdhury, S., Jing, W., Cappelleri, D.J.: Controlling multiple microrobots: recent progress and future challenges. J. Micro-Bio Robot. 10(1–4), 1–11 (2015)

    Article  Google Scholar 

  6. Diller, E., Giltinan, J., Sitti, M.: Independent control of multiple magnetic microrobots in three dimensions. Int. J. Robot. Res. 32(5), 614–631 (2013)

    Article  Google Scholar 

  7. Kunda, P., Cohen, I., Dowling, D.: Fluid Mechanics, 6th edn. Academic Press, New York (2015)

    Google Scholar 

  8. Mahoney, A.W., Abbott, J.J.: Generating rotating magnetic fields with a single permanent magnet for propulsion of untethered magnetic devices in a lumen. IEEE Trans. Robot. 30(2), 411–420 (2014)

    Article  Google Scholar 

  9. Mahoney, A.W., Nelson, N.D., Peyer, K.E., Nelson, B.J., Abbott, J.J.: Behavior of rotating magnetic microrobots above the step-out frequency with application to control of multi-microrobot systems. Appl. Phys. Lett. 104(14), 144101 (2014)

    Article  Google Scholar 

  10. Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for minimally invasive medicine. Ann. Rev. Biomed. Eng. 12, 55–85 (2010)

    Article  Google Scholar 

  11. Petruska, A.J., Abbott, J.J.: Optimal permanent-magnet geometries for dipole field approximation. IEEE Trans. Magn. 2, 811–819 (2013)

    Article  Google Scholar 

  12. Petruska, A.J., Abbott, J.J.: Omnimagnet: an omnidirectional electromagnet for controlled dipole-field generation. IEEE Trans. Magn. 50(7), 8400810 (2014)

    Article  Google Scholar 

  13. Servant, A., Qiu, F., Mazza, M., Kostarelos, K., Nelson, B.J.: Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 27(19), 2981–2988 (2015)

    Article  Google Scholar 

  14. Sitti, M., Ceylan, H., Hu, W., Giltinan, J., Turan, M., Yim, S., Diller, E.: Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE 103(2), 205–224 (2015)

    Article  Google Scholar 

  15. Tottori, S., Sugita, N., Kometani, R., Ishihara, S., Mitsuishi, M.: Selective control method for multiple magnetic helical microrobots. J. Micro-Nano Mechatronics 6(3–4), 89–95 (2011)

    Article  Google Scholar 

  16. Tottori, S., Zhang, L., Peyer, K.E., Nelson, B.J.: Assembly, disassembly, and anomalous propulsion of microscopic helices. Nano Lett. 13(9), 4263–4268 (2013)

    Article  Google Scholar 

  17. Wright, S.E., Mahoney, A.W., Popek, K.M., Abbott, J.J.: The spherical-actuator-magnet manipulator: a permanent-magnet robotic end-effector. IEEE Trans. Robot. 33(5), 1013–1024 (2017)

    Article  Google Scholar 

  18. Yu, J., Xu, T., Lu, Z., Vong, C.I., Zhang, L.: On-demand disassembly of paramagnetic nanoparticle chains for microrobotic cargo delivery. IEEE Trans. Robot. 99, 1–13 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jake J. Abbott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abbott, J.J., Fu, H.C. (2020). Controlling Homogeneous Microrobot Swarms In Vivo Using Rotating Magnetic Dipole Fields. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_1

Download citation

Publish with us

Policies and ethics