Nothing Special   »   [go: up one dir, main page]

Skip to main content

New Optimization Algorithm Based on Free Dynamic Schema

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2019)

Abstract

In this paper, we describe and test a new evolutionary algorithm based on the notion of a schema, which is designed to solve global optimization problems. We call it Free Dynamic Schema (FDS). It is a more refined variant of our previous DSC, DSDSC and MDSDSC algorithms. FDS processes two populations which are partially composed of the same chromosomes. The algorithm divides each population into several groups to which various genetic operators are applied: free dynamic schema, dissimilarity, similarity, and dynamic dissimilarity. Also, some new chromosomes are regenerated randomly. The FDS algorithm is applied to 22 test functions in 2, 4 and 10 dimensions. It is also compared with the classical GA, CMA-ES and DE algorithms. Moreover, the FDS algorithm is compared with the BA and PSA algorithms for some functions. In most cases, we have found the FDS algorithm to be superior to the classical GA and BA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu, Y., et al.: Dynamic self-adaptive double population particle swarm optimization algorithm based on Lorenz equation. J. Comput. Commun. 5(13), 9–20 (2017)

    Article  Google Scholar 

  2. Park, T., Ryu, K.R.: A dual-population genetic algorithm for adaptive diversity control. IEEE Trans. Evol. Comput. 14(6), 865–884 (2010)

    Article  Google Scholar 

  3. Mei, J., Wu, H.: Double bee population evolutionary genetic algorithm with filtering operation. In: Wen, Z., Li, T. (eds.) Foundations of Intelligent Systems. AISC, vol. 277, pp. 693–700. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54924-3_65

    Chapter  Google Scholar 

  4. Al-Jawadi, R., Studniarski, M.: An optimization algorithm based on multi-dynamic schema of chromosomes. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018, Part I. LNCS (LNAI), vol. 10841, pp. 279–289. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0_27

    Chapter  Google Scholar 

  5. Al-Jawadi, R.: An optimization algorithm based on dynamic schema with dissimilarities and similarities of chromosomes. Int. J. Comput. Electr. Autom. Control Inf. Eng. 7(8), 1278–1285 (2016)

    Google Scholar 

  6. Al-Jawadi, R., Studniarski, M., Younus, A.: New genetic algorithm based on dissimilaries and similarities. Comput. Sci. J. AGH Univ. Sci. Technol. Pol. 19(1), 19 (2018)

    Google Scholar 

  7. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-03315-9

    Book  MATH  Google Scholar 

  8. Sultan, A.B.M., Mahmod, R., Sukaiman, M.N., Abu Bakar, M.R.: Maintaining diversity for genetic algorithm: a case of timetabling problem. J. Teknol. Malaysia 44(D), 123–130 (2006)

    Google Scholar 

  9. CMA-ES. Matlab program. https://www.mathworks.com/matlabcentral/fileexchange/52898-cma-es-in-matlab

  10. Price, K.V.: Differential Evolution, pp. 187–214 (2013). http://www.dii.unipd.it/~alotto/didattica/corsi/Elettrotecnica%20computazionale/DE.pdf

    Chapter  Google Scholar 

  11. Eesa, A.S., Brifcani, A.M.A., Orman, Z.: A new tool for global optimization problems- cuttlefish algorithm. Int. J. Comput. Electr. Autom. Control Inf. Eng. 8(9), 1198–1202 (2014)

    Google Scholar 

Download references

Acknowledgments

The first author wishes to thank the Ministry of Higher Education and Scientific Research (MOHESR), Iraq.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Radhwan Yousif Al-Jawadi , Marcin Studniarski or Aisha Azeez Younus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Jawadi, R.Y., Studniarski, M., Younus, A.A. (2019). New Optimization Algorithm Based on Free Dynamic Schema. In: Nguyen, N., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2019. Lecture Notes in Computer Science(), vol 11683. Springer, Cham. https://doi.org/10.1007/978-3-030-28377-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28377-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28376-6

  • Online ISBN: 978-3-030-28377-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics