Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using a Hybrid Approach to Model Central Carbon Metabolism Across the Cell Cycle

  • Conference paper
  • First Online:
Hybrid Systems Biology (HSB 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11705))

Included in the following conference series:

Abstract

Metabolism and cell cycle are two central processes in the life of a eukaryote cell. If they have been extensively studied in their own right, their interconnection remains relatively poorly understood. In this paper, we propose to use a differential model of the central carbon metabolism. After verifying the model accurately reproduces known metabolic variations during the cell cycle’s phases, we extend it into a hybrid system reproducing an imposed succession of the phases. This first hybrid approach qualitatively recovers observations made in the literature, providing an interesting first step towards a better understanding of the crosstalks between cell cycle and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that this fact amounts to supposing that the “genetic part” of the cell ensures the maintenance of enzymatic pools.

  2. 2.

    For the sake of simplicity, the demands in amino acids are ignored in this paper.

  3. 3.

    in [3], the range of variation of redox ratios is low in normal cells with respect to cancer cells.

References

  1. Barberis, M., Todd, R.G., van der Zee, L.: Advances and challenges in logical modeling of cell cycle regulation: perspective for multi-scale, integrative yeast cell models. FEMS Yeast Res. 17(1), fow103 (2017). https://doi.org/10.1093/femsyr/fow103

    Article  Google Scholar 

  2. Cai, L., Tu, B.P.: Driving the cell cycle through metabolism. Annu. Rev. Cell Dev. Biol. 28(1), 59–87 (2012). https://doi.org/10.1146/annurev-cellbio-092910-154010

    Article  Google Scholar 

  3. da Veiga Moreira, J., et al.: The redox status of cancer cells supports mechanisms behind the Warburg effect. Metabolites 6(4), 33 (2016). https://doi.org/10.3390/metabo6040033

    Article  Google Scholar 

  4. da Veiga Moreira, J., Hamraz, M., Abolhassani, M., Schwartz, L., Jolicœur, M., Peres, S.: Metabolic therapies inhibit tumor growth in vivo and in silico. Sci. Rep. 9(1) (2019). https://doi.org/10.1038/s41598-019-39109-1

  5. da Veiga Moreira, J., et al.: Cell cycle progression is regulated by intertwined redox oscillators. Theor. Biol. Med. Model. 12(1) (2015). https://doi.org/10.1186/s12976-015-0005-2

  6. Diaz-Moralli, S., Tarrado-Castellarnau, M., Miranda, A., Cascante, M.: Targeting cell cycle regulation in cancer therapy. Pharmacol. Ther. 138(2), 255–271 (2013). https://doi.org/10.1016/j.pharmthera.2013.01.011

    Article  Google Scholar 

  7. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14), e124–e131 (2006). https://doi.org/10.1093/bioinformatics/btl210

    Article  Google Scholar 

  8. Funahashi, A., Matsuoka, Y., Jouraku, A., Morohashi, M., Kikuchi, N., Kitano, H.: Cell designer 3.5: a versatile modeling tool for biochemical networks. Proc. IEEE 96(8), 1254–1265 (2008). https://doi.org/10.1109/JPROC.2008.925458

    Article  Google Scholar 

  9. Kalucka, J., et al.: Metabolic control of the cell cycle. Cell Cycle 14(21), 3379–3388 (2015). https://doi.org/10.1080/15384101.2015.1090068

    Article  Google Scholar 

  10. Kaplon, J., van Dam, L., Peeper, D.: Two-way communication between the metabolic and cell cycle machineries: the molecular basis. Cell Cycle 14(13), 2022–2032 (2015). https://doi.org/10.1080/15384101.2015.1044172

    Article  Google Scholar 

  11. Novák, B., Tyson, J.J.: A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230(4), 563–579 (2004). https://doi.org/10.1016/j.jtbi.2004.04.039

    Article  MathSciNet  Google Scholar 

  12. Robitaille, J., Chen, J., Jolicoeur, M.: A Single dynamic metabolic model can describe mAb producing CHO cell batch and fed-batch cultures on different culture media. PLoS ONE 10(9), e0136815 (2015). https://doi.org/10.1371/journal.pone.0136815

    Article  Google Scholar 

  13. Segel, I.H.: Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady State Enzyme Systems. Wiley, New York (1993). Wiley classics library ed edn. oCLC: ocm31157638

    Google Scholar 

  14. Sheikh, K., Förster, J., Nielsen, L.K.: Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus. Biotechnol. Prog. 21(1), 112–121 (2008). https://doi.org/10.1021/bp0498138

    Article  Google Scholar 

  15. Zhao, G., Chen, Y., Carey, L., Futcher, B.: Cyclin-dependent Kinase co-ordinates carbohydrate metabolism and cell cycle in S. cerevisiae. Mol. Cell 62(4), 546–557 (2016). https://doi.org/10.1016/j.molcel.2016.04.026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecile Moulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moulin, C., Tournier, L., Peres, S. (2019). Using a Hybrid Approach to Model Central Carbon Metabolism Across the Cell Cycle. In: Češka, M., Paoletti, N. (eds) Hybrid Systems Biology. HSB 2019. Lecture Notes in Computer Science(), vol 11705. Springer, Cham. https://doi.org/10.1007/978-3-030-28042-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28042-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28041-3

  • Online ISBN: 978-3-030-28042-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics