Abstract
Metabolism and cell cycle are two central processes in the life of a eukaryote cell. If they have been extensively studied in their own right, their interconnection remains relatively poorly understood. In this paper, we propose to use a differential model of the central carbon metabolism. After verifying the model accurately reproduces known metabolic variations during the cell cycle’s phases, we extend it into a hybrid system reproducing an imposed succession of the phases. This first hybrid approach qualitatively recovers observations made in the literature, providing an interesting first step towards a better understanding of the crosstalks between cell cycle and metabolism.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that this fact amounts to supposing that the “genetic part” of the cell ensures the maintenance of enzymatic pools.
- 2.
For the sake of simplicity, the demands in amino acids are ignored in this paper.
- 3.
in [3], the range of variation of redox ratios is low in normal cells with respect to cancer cells.
References
Barberis, M., Todd, R.G., van der Zee, L.: Advances and challenges in logical modeling of cell cycle regulation: perspective for multi-scale, integrative yeast cell models. FEMS Yeast Res. 17(1), fow103 (2017). https://doi.org/10.1093/femsyr/fow103
Cai, L., Tu, B.P.: Driving the cell cycle through metabolism. Annu. Rev. Cell Dev. Biol. 28(1), 59–87 (2012). https://doi.org/10.1146/annurev-cellbio-092910-154010
da Veiga Moreira, J., et al.: The redox status of cancer cells supports mechanisms behind the Warburg effect. Metabolites 6(4), 33 (2016). https://doi.org/10.3390/metabo6040033
da Veiga Moreira, J., Hamraz, M., Abolhassani, M., Schwartz, L., Jolicœur, M., Peres, S.: Metabolic therapies inhibit tumor growth in vivo and in silico. Sci. Rep. 9(1) (2019). https://doi.org/10.1038/s41598-019-39109-1
da Veiga Moreira, J., et al.: Cell cycle progression is regulated by intertwined redox oscillators. Theor. Biol. Med. Model. 12(1) (2015). https://doi.org/10.1186/s12976-015-0005-2
Diaz-Moralli, S., Tarrado-Castellarnau, M., Miranda, A., Cascante, M.: Targeting cell cycle regulation in cancer therapy. Pharmacol. Ther. 138(2), 255–271 (2013). https://doi.org/10.1016/j.pharmthera.2013.01.011
Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14), e124–e131 (2006). https://doi.org/10.1093/bioinformatics/btl210
Funahashi, A., Matsuoka, Y., Jouraku, A., Morohashi, M., Kikuchi, N., Kitano, H.: Cell designer 3.5: a versatile modeling tool for biochemical networks. Proc. IEEE 96(8), 1254–1265 (2008). https://doi.org/10.1109/JPROC.2008.925458
Kalucka, J., et al.: Metabolic control of the cell cycle. Cell Cycle 14(21), 3379–3388 (2015). https://doi.org/10.1080/15384101.2015.1090068
Kaplon, J., van Dam, L., Peeper, D.: Two-way communication between the metabolic and cell cycle machineries: the molecular basis. Cell Cycle 14(13), 2022–2032 (2015). https://doi.org/10.1080/15384101.2015.1044172
Novák, B., Tyson, J.J.: A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230(4), 563–579 (2004). https://doi.org/10.1016/j.jtbi.2004.04.039
Robitaille, J., Chen, J., Jolicoeur, M.: A Single dynamic metabolic model can describe mAb producing CHO cell batch and fed-batch cultures on different culture media. PLoS ONE 10(9), e0136815 (2015). https://doi.org/10.1371/journal.pone.0136815
Segel, I.H.: Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady State Enzyme Systems. Wiley, New York (1993). Wiley classics library ed edn. oCLC: ocm31157638
Sheikh, K., Förster, J., Nielsen, L.K.: Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus. Biotechnol. Prog. 21(1), 112–121 (2008). https://doi.org/10.1021/bp0498138
Zhao, G., Chen, Y., Carey, L., Futcher, B.: Cyclin-dependent Kinase co-ordinates carbohydrate metabolism and cell cycle in S. cerevisiae. Mol. Cell 62(4), 546–557 (2016). https://doi.org/10.1016/j.molcel.2016.04.026
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Moulin, C., Tournier, L., Peres, S. (2019). Using a Hybrid Approach to Model Central Carbon Metabolism Across the Cell Cycle. In: Češka, M., Paoletti, N. (eds) Hybrid Systems Biology. HSB 2019. Lecture Notes in Computer Science(), vol 11705. Springer, Cham. https://doi.org/10.1007/978-3-030-28042-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-28042-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-28041-3
Online ISBN: 978-3-030-28042-0
eBook Packages: Computer ScienceComputer Science (R0)