Abstract
RDF and SPARQL are increasingly used in a broad range of information management scenarios (e.g., governments, corporations, and startups). Scalable SPARQL querying has been the main issue for virtually all the recent RDF triplestores. This paper presents WA-RDF, a middleware that addresses workload-adaptive management of large RDF graphs. Our middleware not only employs all the most used NoSQL data models but also provides a novel RDF data partitioning approach based on a fragmentation strategy that maps RDF data into multiple NoSQL databases. This workload-aware partitioning scheme provides, in turn, efficient processing of SPARQL queries over these NoSQL databases. Our experimental evaluation shows that the solution is promising, outperforming three recent baselines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bugiotti, F., Bursztyn, D., Diego, U.C.S., Ileana, I.: Invisible glue: scalable self-tuning multi-stores. In: CIDR 2015 (2015)
Gu, R., Hu, W., Huang, Y.: Rainbow: a distributed and hierarchical RDF triple store with dynamic scalability. In: Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014, pp. 561–566 (2015). https://doi.org/10.1109/BigData.2014.7004274
Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. Web Semant. Sci. Serv. Agents WWW 3(2), 158–182 (2005)
Hu, C., Wang, X., Yang, R., Wo, T.: ScalaRDF: a distributed, elastic and scalable in-memory RDF triple store (2016)
Ma, Z., Capretz, M.A.M., Yan, L.: Storing massive Resource Description Framework (RDF) data: a survey. Knowl. Eng. Rev. 31(04), 391–413 (2016). https://doi.org/10.1017/S0269888916000217, http://www.journals.cambridge.org/abstract_S0269888916000217
Mello, R.D.S., et al.: Master: a multiple aspect view on trajectories. Trans. GIS (2019)
Santana, M.: Workload-aware RDF partitioning and SPARQL query caching for massive RDF graphs stored in NoSQL databases. In: Brazilian Symposium on Databases (SBBD), pp. 1–7. SBC (2017)
Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF querying with SPARQL on Spark. Proc. VLDB Endowment 9(10), 804–815 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Fragments and Queries
A Fragments and Queries
F1 - Insert a university:
University0.edu rdf:type ub:University
F2 - Insert a department for the university:
Department0.University0.edu rdf:type ub:Department
Department0.University0.edu ub:subOrganizationOf University0.edu
F3 - Insert a professor for the department:
Professor0 rdf:type ub:Professor
Professor0 rdf:type ub:Chair
Professor0 ub:worksFor Department0.University0.edu
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Santana, L.H.Z., dos Santos Mello, R. (2019). Querying in a Workload-Aware Triplestore Based on NoSQL Databases. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2019. Lecture Notes in Computer Science(), vol 11707. Springer, Cham. https://doi.org/10.1007/978-3-030-27618-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-27618-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27617-1
Online ISBN: 978-3-030-27618-8
eBook Packages: Computer ScienceComputer Science (R0)