Nothing Special   »   [go: up one dir, main page]

Skip to main content

Querying in a Workload-Aware Triplestore Based on NoSQL Databases

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11707))

Included in the following conference series:

  • 741 Accesses

Abstract

RDF and SPARQL are increasingly used in a broad range of information management scenarios (e.g., governments, corporations, and startups). Scalable SPARQL querying has been the main issue for virtually all the recent RDF triplestores. This paper presents WA-RDF, a middleware that addresses workload-adaptive management of large RDF graphs. Our middleware not only employs all the most used NoSQL data models but also provides a novel RDF data partitioning approach based on a fragmentation strategy that maps RDF data into multiple NoSQL databases. This workload-aware partitioning scheme provides, in turn, efficient processing of SPARQL queries over these NoSQL databases. Our experimental evaluation shows that the solution is promising, outperforming three recent baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.w3.org/.

  2. 2.

    https://parquet.apache.org/.

  3. 3.

    https://neo4j.com/developer/cypher-query-language/.

  4. 4.

    https://aws.amazon.com/ec2/instance-types/.

  5. 5.

    https://github.com/mxhdev/S2RDF_BSBM.

References

  1. Bugiotti, F., Bursztyn, D., Diego, U.C.S., Ileana, I.: Invisible glue: scalable self-tuning multi-stores. In: CIDR 2015 (2015)

    Google Scholar 

  2. Gu, R., Hu, W., Huang, Y.: Rainbow: a distributed and hierarchical RDF triple store with dynamic scalability. In: Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014, pp. 561–566 (2015). https://doi.org/10.1109/BigData.2014.7004274

  3. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. Web Semant. Sci. Serv. Agents WWW 3(2), 158–182 (2005)

    Article  Google Scholar 

  4. Hu, C., Wang, X., Yang, R., Wo, T.: ScalaRDF: a distributed, elastic and scalable in-memory RDF triple store (2016)

    Google Scholar 

  5. Ma, Z., Capretz, M.A.M., Yan, L.: Storing massive Resource Description Framework (RDF) data: a survey. Knowl. Eng. Rev. 31(04), 391–413 (2016). https://doi.org/10.1017/S0269888916000217, http://www.journals.cambridge.org/abstract_S0269888916000217

    Article  Google Scholar 

  6. Mello, R.D.S., et al.: Master: a multiple aspect view on trajectories. Trans. GIS (2019)

    Google Scholar 

  7. Santana, M.: Workload-aware RDF partitioning and SPARQL query caching for massive RDF graphs stored in NoSQL databases. In: Brazilian Symposium on Databases (SBBD), pp. 1–7. SBC (2017)

    Google Scholar 

  8. Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF querying with SPARQL on Spark. Proc. VLDB Endowment 9(10), 804–815 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Henrique Zambom Santana .

Editor information

Editors and Affiliations

A Fragments and Queries

A Fragments and Queries

F1 - Insert a university:

University0.edu rdf:type ub:University

F2 - Insert a department for the university:

Department0.University0.edu rdf:type ub:Department

Department0.University0.edu ub:subOrganizationOf University0.edu

F3 - Insert a professor for the department:

Professor0 rdf:type ub:Professor

Professor0 rdf:type ub:Chair

Professor0 ub:worksFor Department0.University0.edu

figure h

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santana, L.H.Z., dos Santos Mello, R. (2019). Querying in a Workload-Aware Triplestore Based on NoSQL Databases. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2019. Lecture Notes in Computer Science(), vol 11707. Springer, Cham. https://doi.org/10.1007/978-3-030-27618-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27618-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27617-1

  • Online ISBN: 978-3-030-27618-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics