Abstract
Single image dehazing is a challenging ill-posed problem. The traditional methods mainly focus on estimating the transmission of atmospheric-light medium with some priors or constraints. In this paper, we propose a novel end-to-end convolutional neural network (CNN) for image dehazing, called multi-scale densely connected dehazing network (MDCDN). The proposed network consists of a parallel multi-scale densely connected CNN network and an encoder-decoder U net. The parallel multi-scale dense-net can estimate transmission map accurately. The encoder-decoder U net is used to estimate the atmospheric light intensity. The all-in-one training can jointly learn the transmission map, atmospheric light, and dehazing images all together with jointly MSE error and a discriminator loss. We also create a dataset with indoor and outdoor data based on the LFSD, NLPR, and NYU2 depth datasets to train our network. Extensive experiments demonstrate that, in most cases, the proposed method achieves significant improvements over the state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)
Kopf, J., et al.: Deep photo: model-based photograph enhancement and viewing, vol. 27, no. 5, p. 116. ACM (2008)
Sakaridis, C., Dai, D. Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vis. 1–20 (2018)
Song, Y., Bao, L., Yang, Q.: Real-time video decolorization using bilateral filtering. In: IEEE Winter Conference on Applications of Computer Vision, pp. 159–166. IEEE (2014)
Yuan, Y., Liang, X., Wang, X., Yeung, D.Y. Gupta, A.: Temporal dynamic graph LSTM for action-driven video object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1801–1810 (2017)
Qing, C., Huang, W., Zhu, S., Xu, X.: Underwater image enhancement with an adaptive dehazing framework. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 338–342. IEEE (2015)
Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 617–624 (2013)
Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)
Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10
Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: An all-in-one network for dehazing and beyond. arXiv preprint arXiv:1707.06543 (2017)
Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2018)
Nayar, S.K., Narasimhan, S.G.: Vision in bad weather. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 820–827. IEEE (1999)
Li, N., Ye, J., Ji, Y., Ling, H., Yu, J.: Saliency detection on light field. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2806–2813 (2014)
Peng, H., Li, B., Xiong, W., Hu, W., Ji, R.: RGBD salient object detection: a benchmark and algorithms. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 92–109. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_7
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
Nishino, K., Kratz, L., Lombardi, S.: Bayesian defogging. Int. J. Comput. Vision 98(3), 263–278 (2012)
Zhu, Q., Mai, J., Shao, L.: Single image dehazing using color attenuation prior. In: BMVC (2014)
Cui, T., Tian, J., Wang, E., Tang, Y.: Single image dehazing by latent region-segmentation based transmission estimation and weighted l 1-norm regularisation. IET Image Process. 11(2), 145–154 (2016)
Fattal, R.: Dehazing using color-lines. ACM Trans. Graph. (TOG) 34(1), 13 (2014)
Berman, D., Avidan, S.: Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674–1682 (2016)
Gibson, K.B., Nguyen, T.Q.: An analysis of single image defogging methods using a color ellipsoid framework. EURASIP J. Image Video Process. 2013(1), 37 (2013)
He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)
Omer, I., Werman, M.: Color lines: image specific color representation. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, p. II. IEEE (2004)
Gibson, K.B., Vo, D.T., Nguyen, T.Q.: An investigation of dehazing effects on image and video coding. IEEE Trans. Image Process. 21(2), 662–673 (2012)
Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)
Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, pp. 2366–2374 (2014)
Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream dense network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 695–704 (2018)
Purohit, K., Mandal, S., Rajagopalan, A.N.: Scale-recurrent multi-residual dense network for image super-resolution. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 132–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_9
Acknowledgements
The work presented in this paper was supported by the Natural Science Foundation of China under Grant No. 91648118.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Cui, T., Zhang, Z., Tang, Y., Tian, J. (2019). Multi-scale Densely Connected Dehazing Network. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11743. Springer, Cham. https://doi.org/10.1007/978-3-030-27538-9_51
Download citation
DOI: https://doi.org/10.1007/978-3-030-27538-9_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27537-2
Online ISBN: 978-3-030-27538-9
eBook Packages: Computer ScienceComputer Science (R0)