Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-scale Densely Connected Dehazing Network

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11743))

Included in the following conference series:

Abstract

Single image dehazing is a challenging ill-posed problem. The traditional methods mainly focus on estimating the transmission of atmospheric-light medium with some priors or constraints. In this paper, we propose a novel end-to-end convolutional neural network (CNN) for image dehazing, called multi-scale densely connected dehazing network (MDCDN). The proposed network consists of a parallel multi-scale densely connected CNN network and an encoder-decoder U net. The parallel multi-scale dense-net can estimate transmission map accurately. The encoder-decoder U net is used to estimate the atmospheric light intensity. The all-in-one training can jointly learn the transmission map, atmospheric light, and dehazing images all together with jointly MSE error and a discriminator loss. We also create a dataset with indoor and outdoor data based on the LFSD, NLPR, and NYU2 depth datasets to train our network. Extensive experiments demonstrate that, in most cases, the proposed method achieves significant improvements over the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  2. Kopf, J., et al.: Deep photo: model-based photograph enhancement and viewing, vol. 27, no. 5, p. 116. ACM (2008)

    Google Scholar 

  3. Sakaridis, C., Dai, D. Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vis. 1–20 (2018)

    Google Scholar 

  4. Song, Y., Bao, L., Yang, Q.: Real-time video decolorization using bilateral filtering. In: IEEE Winter Conference on Applications of Computer Vision, pp. 159–166. IEEE (2014)

    Google Scholar 

  5. Yuan, Y., Liang, X., Wang, X., Yeung, D.Y. Gupta, A.: Temporal dynamic graph LSTM for action-driven video object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1801–1810 (2017)

    Google Scholar 

  6. Qing, C., Huang, W., Zhu, S., Xu, X.: Underwater image enhancement with an adaptive dehazing framework. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 338–342. IEEE (2015)

    Google Scholar 

  7. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 617–624 (2013)

    Google Scholar 

  8. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  9. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10

    Chapter  Google Scholar 

  10. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: An all-in-one network for dehazing and beyond. arXiv preprint arXiv:1707.06543 (2017)

  11. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2018)

    Google Scholar 

  12. Nayar, S.K., Narasimhan, S.G.: Vision in bad weather. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 820–827. IEEE (1999)

    Google Scholar 

  13. Li, N., Ye, J., Ji, Y., Ling, H., Yu, J.: Saliency detection on light field. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2806–2813 (2014)

    Google Scholar 

  14. Peng, H., Li, B., Xiong, W., Hu, W., Ji, R.: RGBD salient object detection: a benchmark and algorithms. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 92–109. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_7

    Chapter  Google Scholar 

  15. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  16. Nishino, K., Kratz, L., Lombardi, S.: Bayesian defogging. Int. J. Comput. Vision 98(3), 263–278 (2012)

    Article  MathSciNet  Google Scholar 

  17. Zhu, Q., Mai, J., Shao, L.: Single image dehazing using color attenuation prior. In: BMVC (2014)

    Google Scholar 

  18. Cui, T., Tian, J., Wang, E., Tang, Y.: Single image dehazing by latent region-segmentation based transmission estimation and weighted l 1-norm regularisation. IET Image Process. 11(2), 145–154 (2016)

    Article  Google Scholar 

  19. Fattal, R.: Dehazing using color-lines. ACM Trans. Graph. (TOG) 34(1), 13 (2014)

    Article  Google Scholar 

  20. Berman, D., Avidan, S.: Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674–1682 (2016)

    Google Scholar 

  21. Gibson, K.B., Nguyen, T.Q.: An analysis of single image defogging methods using a color ellipsoid framework. EURASIP J. Image Video Process. 2013(1), 37 (2013)

    Article  Google Scholar 

  22. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  23. Omer, I., Werman, M.: Color lines: image specific color representation. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, p. II. IEEE (2004)

    Google Scholar 

  24. Gibson, K.B., Vo, D.T., Nguyen, T.Q.: An investigation of dehazing effects on image and video coding. IEEE Trans. Image Process. 21(2), 662–673 (2012)

    Article  MathSciNet  Google Scholar 

  25. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)

    Article  MathSciNet  Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  27. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  28. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  29. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  30. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  31. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  32. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, pp. 2366–2374 (2014)

    Google Scholar 

  33. Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream dense network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 695–704 (2018)

    Google Scholar 

  34. Purohit, K., Mandal, S., Rajagopalan, A.N.: Scale-recurrent multi-residual dense network for image super-resolution. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 132–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_9

    Chapter  Google Scholar 

Download references

Acknowledgements

The work presented in this paper was supported by the Natural Science Foundation of China under Grant No. 91648118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yandong Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, T., Zhang, Z., Tang, Y., Tian, J. (2019). Multi-scale Densely Connected Dehazing Network. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11743. Springer, Cham. https://doi.org/10.1007/978-3-030-27538-9_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27538-9_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27537-2

  • Online ISBN: 978-3-030-27538-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics