Abstract
Data providers have been uploading RDF datasets on the web to aid researchers and analysts in finding insights. These datasets, made available by different data providers, contain common characteristics that enable their integration. However, since each provider has their own data dictionary, identifying common concepts is not trivial and we require costly and complex entity resolution and transformation rules to perform such integration. In this paper, we propose a novel method, that given a set of independent RDF datasets, provides a multidimensional interpretation of these datasets and integrates them based on a common multidimensional space (if any) identified. To do so, our method first identifies potential dimensional and factual data on the input datasets and performs entity resolution to merge common dimensional and factual concepts. As a result, we generate a common multidimensional space and identify each input dataset as a cuboid of the resulting lattice. With such output, we are able to exploit open data with OLAP operators in a richer fashion than dealing with them separately.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The European Air Quality RDF Database: http://qweb.cs.aau.dk/qboairbase/.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
References
Achichi, M., et al.: Results of the ontology alignment evaluation initiative 2017. In: Proceedings of the 12th International Workshop on Ontology Matching Co-Located with the 16th International Semantic Web Conference, vol. 2032, pp. 61–113. CEUR-WS, October 2017
Cravero, A., Sepúlveda, S.: Multidimensional design paradigms for data warehouses: a systematic mapping study. J. Softw. Eng. Appl. 7(1), 53–61 (2014)
Diamantini, C., Potena, D., Storti, E.: Multidimensional query reformulation with measure decomposition. Inf. Syst. 78, 23–39 (2018)
Estrada-Torres, B., et al.: Measuring performance in knowledge-intensive processes. ACM Trans. Internet Technol. 19(1), 151–1526 (2019)
Etcheverry, L., Vaisman, A.A.: QB4OLAP: a new vocabulary for OLAP cubes on the semantic web. In: Proceedings of the 3rd International Conference on Consuming Linked Data, vol. 905, pp. 27–38. CEUR-WS.org, November 2012
Gallinucci, E., Golfarelli, M., Rizzi, S., Abelló, A., Romero, O.: Interactive multidimensional modeling of linked data for exploratory OLAP. Inf. Syst. 77, 86–104 (2018)
Isele, R., Jentzsch, A., Bizer, C.: Silk server - adding missing links while consuming linked data. In: Proceedings of the 1st International Conference on Consuming Linked Data, vol. 665, pp. 85–96. CEUR-WS.org, November 2010
Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: logic-based and scalable ontology matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 273–288. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_18
Jindal, R., Acharya, A.: Federated data warehouse architecture. Wipro Technologies White Paper (2004)
Kämpgen, B., Harth, A.: OLAP4LD – a framework for building analysis applications over governmental statistics. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8798, pp. 389–394. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11955-7_54
Kämpgen, B., O’Riain, S., Harth, A.: Interacting with statistical linked data via OLAP operations. In: Simperl, E., Norton, B., Mladenic, D., Della Valle, E., Fundulaki, I., Passant, A., Troncy, R. (eds.) ESWC 2012. LNCS, vol. 7540, pp. 87–101. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46641-4_7
Moaawad, M.R., Mokhtar, H.M.O., Al Feel, H.T.: On-the-fly academic linked data integration. In: Proceedings of the International Conference on Compute and Data Analysis, pp. 114–122. ACM, May 2017
Popova, V., Sharpanskykh, A.: Formal modelling of organisational goals based on performance indicators. Data Knowl. Eng. 70(4), 335–364 (2011)
Romero, O., Abelló, A.: A survey of multidimensional modeling methodologies. Int. J. Data Warehous. Min. 5(2), 1–23 (2009)
Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 245–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_16
Schultz, A., Matteini, A., Isele, R., Bizer, C., Becker, C.: LDIF - linked data integration framework. In: Proceedings of the 2nd International Conference on Consuming Linked Data, vol. 782, pp. 125–130. CEUR-WS.org, October 2011
Suchanek, F.M., Abiteboul, S., Senellart, P.: Paris: probabilistic alignment of relations, instances, and schema. Proc. VLDB Endow. 5(3), 157–168 (2011)
Zong, N.: Instance-based hierarchical schema alignment in linked data. Ph.D. thesis, Seoul National University Graduate School, Seoul, South Korea (2015)
Acknowledgements
This research has been funded by the European Commission through the Erasmus Mundus Joint Doctorate Information Technologies for Business Intelligence-Doctoral College (IT4BI-DC) program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Behan, J.J.K., Romero, O., Zimányi, E. (2019). Multidimensional Integration of RDF Datasets. In: Ordonez, C., Song, IY., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2019. Lecture Notes in Computer Science(), vol 11708. Springer, Cham. https://doi.org/10.1007/978-3-030-27520-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-27520-4_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27519-8
Online ISBN: 978-3-030-27520-4
eBook Packages: Computer ScienceComputer Science (R0)