Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multidimensional Integration of RDF Datasets

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11708))

Included in the following conference series:

Abstract

Data providers have been uploading RDF datasets on the web to aid researchers and analysts in finding insights. These datasets, made available by different data providers, contain common characteristics that enable their integration. However, since each provider has their own data dictionary, identifying common concepts is not trivial and we require costly and complex entity resolution and transformation rules to perform such integration. In this paper, we propose a novel method, that given a set of independent RDF datasets, provides a multidimensional interpretation of these datasets and integrates them based on a common multidimensional space (if any) identified. To do so, our method first identifies potential dimensional and factual data on the input datasets and performs entity resolution to merge common dimensional and factual concepts. As a result, we generate a common multidimensional space and identify each input dataset as a cuboid of the resulting lattice. With such output, we are able to exploit open data with OLAP operators in a richer fashion than dealing with them separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The European Air Quality RDF Database: http://qweb.cs.aau.dk/qboairbase/.

  2. 2.

    https://catalog.data.gov/dataset/2015-greenhouse-gas-report-data.

  3. 3.

    https://opendata.camden.gov.uk/resource/4txj-pb2i.

  4. 4.

    http://estatwrap.ontologycentral.com/page/t2020_rd300.

  5. 5.

    https://www.w3.org/TR/vocab-data-cube/.

  6. 6.

    https://jena.apache.org/.

  7. 7.

    https://virtuoso.openlinksw.com/.

  8. 8.

    https://www.knime.com/.

  9. 9.

    https://wordnet.princeton.edu/.

  10. 10.

    https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present-Dashboard/5cd6-ry5g.

References

  1. Achichi, M., et al.: Results of the ontology alignment evaluation initiative 2017. In: Proceedings of the 12th International Workshop on Ontology Matching Co-Located with the 16th International Semantic Web Conference, vol. 2032, pp. 61–113. CEUR-WS, October 2017

    Google Scholar 

  2. Cravero, A., Sepúlveda, S.: Multidimensional design paradigms for data warehouses: a systematic mapping study. J. Softw. Eng. Appl. 7(1), 53–61 (2014)

    Article  Google Scholar 

  3. Diamantini, C., Potena, D., Storti, E.: Multidimensional query reformulation with measure decomposition. Inf. Syst. 78, 23–39 (2018)

    Article  Google Scholar 

  4. Estrada-Torres, B., et al.: Measuring performance in knowledge-intensive processes. ACM Trans. Internet Technol. 19(1), 151–1526 (2019)

    Article  Google Scholar 

  5. Etcheverry, L., Vaisman, A.A.: QB4OLAP: a new vocabulary for OLAP cubes on the semantic web. In: Proceedings of the 3rd International Conference on Consuming Linked Data, vol. 905, pp. 27–38. CEUR-WS.org, November 2012

    Google Scholar 

  6. Gallinucci, E., Golfarelli, M., Rizzi, S., Abelló, A., Romero, O.: Interactive multidimensional modeling of linked data for exploratory OLAP. Inf. Syst. 77, 86–104 (2018)

    Article  Google Scholar 

  7. Isele, R., Jentzsch, A., Bizer, C.: Silk server - adding missing links while consuming linked data. In: Proceedings of the 1st International Conference on Consuming Linked Data, vol. 665, pp. 85–96. CEUR-WS.org, November 2010

    Google Scholar 

  8. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: logic-based and scalable ontology matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 273–288. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_18

    Chapter  Google Scholar 

  9. Jindal, R., Acharya, A.: Federated data warehouse architecture. Wipro Technologies White Paper (2004)

    Google Scholar 

  10. Kämpgen, B., Harth, A.: OLAP4LD – a framework for building analysis applications over governmental statistics. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8798, pp. 389–394. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11955-7_54

    Chapter  Google Scholar 

  11. Kämpgen, B., O’Riain, S., Harth, A.: Interacting with statistical linked data via OLAP operations. In: Simperl, E., Norton, B., Mladenic, D., Della Valle, E., Fundulaki, I., Passant, A., Troncy, R. (eds.) ESWC 2012. LNCS, vol. 7540, pp. 87–101. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46641-4_7

    Chapter  Google Scholar 

  12. Moaawad, M.R., Mokhtar, H.M.O., Al Feel, H.T.: On-the-fly academic linked data integration. In: Proceedings of the International Conference on Compute and Data Analysis, pp. 114–122. ACM, May 2017

    Google Scholar 

  13. Popova, V., Sharpanskykh, A.: Formal modelling of organisational goals based on performance indicators. Data Knowl. Eng. 70(4), 335–364 (2011)

    Article  Google Scholar 

  14. Romero, O., Abelló, A.: A survey of multidimensional modeling methodologies. Int. J. Data Warehous. Min. 5(2), 1–23 (2009)

    Article  Google Scholar 

  15. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 245–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_16

    Chapter  Google Scholar 

  16. Schultz, A., Matteini, A., Isele, R., Bizer, C., Becker, C.: LDIF - linked data integration framework. In: Proceedings of the 2nd International Conference on Consuming Linked Data, vol. 782, pp. 125–130. CEUR-WS.org, October 2011

    Google Scholar 

  17. Suchanek, F.M., Abiteboul, S., Senellart, P.: Paris: probabilistic alignment of relations, instances, and schema. Proc. VLDB Endow. 5(3), 157–168 (2011)

    Article  Google Scholar 

  18. Zong, N.: Instance-based hierarchical schema alignment in linked data. Ph.D. thesis, Seoul National University Graduate School, Seoul, South Korea (2015)

    Google Scholar 

Download references

Acknowledgements

This research has been funded by the European Commission through the Erasmus Mundus Joint Doctorate Information Technologies for Business Intelligence-Doctoral College (IT4BI-DC) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jam Jahanzeb Khan Behan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Behan, J.J.K., Romero, O., Zimányi, E. (2019). Multidimensional Integration of RDF Datasets. In: Ordonez, C., Song, IY., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2019. Lecture Notes in Computer Science(), vol 11708. Springer, Cham. https://doi.org/10.1007/978-3-030-27520-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27520-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27519-8

  • Online ISBN: 978-3-030-27520-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics