Nothing Special   »   [go: up one dir, main page]

Skip to main content

Flexure-Based Variable Stiffness Gripper for Large-Scale Grasping Force Regulation with Vision

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11740))

Included in the following conference series:

Abstract

This paper presents a vision grasping force sensing and regulation approach for a flexure-based variable stiffness gripper to handle broad-range objects from fragile/soft to rigid/heavy. The proposed vision approach can achieve high-precision grasping force sensing/regulation in large scale without any force sensor, which is realized base on the predictable and adjustable stiffness property of the gripper finger in our structure-controlled variable stiffness gripper, so that the deflection angle of the fingers can be detected from the vision to estimate the corresponding grasping force. Different with traditional vision-based approaches that require tedious manual calibration between the camera and target to retrieve spatial information, our approach incorporates the self-calibration algorithm to calibrate the vision system by employing the specifically-designed visual marks, so that the vision source can be placed with large flexibility in practical operation. Benefited from the large-ratio stiffness variation range of our gripper, the grasping force regulation can be achieved in a large scale, which makes it a universal gripper to handle broad-range objects with different material properties. Various experiments have been conducted to evaluate the force grasping performance using the proposed approach, including force regulation accuracy and grasping of extremely delicate objects (thin potation chip and plastic cup of water) to heavy industrial components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, A., Viswanathan, V., Maheshwari, S., y Alvarado, P.V.: Effects of material properties on soft gripper grasping forces. In: 2018 IEEE International Conference on Soft Robotics (RoboSoft), pp. 437–442, April 2018

    Google Scholar 

  2. Amend, J.R., Brown, E., Rodenberg, N., Jaeger, H.M., Lipson, H.: A positive pressure universal gripper based on the jamming of granular material. IEEE Trans. Robot. 28(2), 341–350 (2012)

    Article  Google Scholar 

  3. Becedas, J., Payo, I., Feliu, V.: Two-flexible-fingers gripper force feedback control system for its application as end effector on a 6-DOF manipulator. IEEE Trans. Robot. 27(3), 599–615 (2011)

    Article  Google Scholar 

  4. Bykerk, L., Liu, D., Waldron, K.: A topology optimisation based design of a compliant gripper for grasping objects with irregular shapes. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 383–388, July 2016

    Google Scholar 

  5. Calandra, R., et al.: More than a feeling: learning to grasp and regrasp using vision and touch. IEEE Robot. Autom. Lett. 3(4), 3300–3307 (2018)

    Article  Google Scholar 

  6. Chen, C.C., Lan, C.C.: An accurate force regulation mechanism for high-speed handling of fragile objects using pneumatic grippers. IEEE Trans. Autom. Sci. Eng. 15, 1–9 (2017)

    Google Scholar 

  7. Chen, F., Sekiyama, K., Di, P., Huang, J., Fukuda, T.: i-hand: an intelligent robotic hand for fast and accurate assembly in electronic manufacturing. In: 2012 IEEE International Conference on Robotics and Automation, pp. 1976–1981, May 2012

    Google Scholar 

  8. Liu, C.-H., et al.: Optimal design of a soft robotic gripper for grasping unknown objects. Soft Robot. 5(4), 452–465 (2018)

    Article  Google Scholar 

  9. Deimel, R., Brock, O.: A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 35(1–3), 161–185 (2016)

    Article  Google Scholar 

  10. Firouzeh, A., Paik, J.: Grasp mode and compliance control of an underactuated origami gripper using adjustable stiffness joints. IEEE/ASME Trans. Mechatron. 22(5), 2165–2173 (2017)

    Article  Google Scholar 

  11. Homberg, B.S., Katzschmann, R.K., Dogar, M.R., Rus, D.: Robust proprioceptive grasping with a soft robot hand. Auton. Robots 43, 681–696 (2018)

    Article  Google Scholar 

  12. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. Int. Ed. 50(8), 1890–1895 (2011)

    Article  Google Scholar 

  13. Jamil, B., Kim, J., Choi, Y.: Force sensing fingertip with soft optical waveguides for robotic hands and grippers. In: 2018 IEEE International Conference on Soft Robotics (RoboSoft), pp. 146–151, April 2018

    Google Scholar 

  14. Kajikawa, S., Abe, K.: Robot finger module with multidirectional adjustable joint stiffness. IEEE/ASME Trans. Mechatron. 17(1), 128–135 (2012)

    Article  Google Scholar 

  15. Kappassov, Z., Corrales, J.-A., Perdereau, V.: Tactile sensing in dexterous robot hands—review. Robot. Auton. Syst. 74, 195–220 (2015)

    Article  Google Scholar 

  16. Kim, B.S., Song, J.B.: Object grasping using a 1 DOF variable stiffness gripper actuated by a hybrid variable stiffness actuator. In: 2011 IEEE International Conference on Robotics and Automation, pp. 4620–4625, May 2011

    Google Scholar 

  17. Kim, U., Lee, D.H., Yoon, W.J., Hannaford, B., Choi, H.R.: Force sensor integrated surgical forceps for minimally invasive robotic surgery. IEEE Trans. Robot. 31(5), 1214–1224 (2015)

    Article  Google Scholar 

  18. Kobayashi, F., Ueno, S., Nakamoto, H., Kojima, F.: Vision based grasping system with universal jamming hand. In: 2015 10th Asian Control Conference (ASCC), pp. 1–4, May 2015

    Google Scholar 

  19. Komati, B., Clévy, C., Lutz, P.: High bandwidth microgripper with integrated force sensors and position estimation for the grasp of multistiffness microcomponents. IEEE/ASME Trans. Mechatron. 21(4), 2039–2049 (2016)

    Article  Google Scholar 

  20. Li, X., Chen, W., Lin, W., Low, K.H.: A variable stiffness robotic gripper based on structure-controlled principle. IEEE Trans. Autom. Sci. Eng. 15, 1–10 (2017)

    Google Scholar 

  21. Liu, Y., Zhang, Y., Xu, Q.: Design and control of a novel compliant constant-force gripper based on buckled fixed-guided beams. IEEE/ASME Trans. Mechatron. 22(1), 476–486 (2017)

    Article  Google Scholar 

  22. Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C., Cianchetti, M.: A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robot. 2(3), 107–116 (2015)

    Article  Google Scholar 

  23. Nakai, H., Kuniyoshi, Y., Inaba, M., Inoue, H.: Metamorphic robot made of low melting point alloy. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 2025–2030 (2002)

    Google Scholar 

  24. Shintake, J., Schubert, B., Rosset, S., Shea, H., Floreano, D.: Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1097–1102, September 2015

    Google Scholar 

  25. Su, J.Y., et al.: Design of tactile sensor array on electric gripper jaws for wire gripping recognition. In: 2014 IEEE International Conference on Automation Science and Engineering (CASE), pp. 1014–1019, August 2014

    Google Scholar 

  26. Tamamoto, T., Koganezawa, K.: Multi-joint gripper with stiffness adjuster. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5481–5486, November 2013

    Google Scholar 

  27. Tamamoto, T., Sayama, K., Koganezawa, K.: Multi-joint gripper with differential gear system. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 15–20, September 2014

    Google Scholar 

  28. Xu, Q.: Design and development of a novel compliant gripper with integrated position and grasping/interaction force sensing. IEEE Trans. Autom. Sci. Eng. 14(3), 1415–1428 (2017)

    Article  Google Scholar 

  29. Wei, Y., et al.: A novel, variable stiffness robotic gripper based on integrated soft actuating and particle jamming. Soft Robot. 3(3), 134–143 (2016)

    Article  Google Scholar 

  30. Zarrin, P.S., Escoto, A., Xu, R., Patel, R.V., Naish, M.D., Trejos, A.L.: Development of an optical fiber-based sensor for grasping and axial force sensing. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 939–944, May 2017

    Google Scholar 

  31. Zhou, X., Majidi, C., O’Reilly, O.M.: Soft hands: an analysis of some gripping mechanisms in soft robot design. Int. J. Solids Struct. 64–65, 155–165 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyue Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, H., Li, X., Chen, W., Zhang, C. (2019). Flexure-Based Variable Stiffness Gripper for Large-Scale Grasping Force Regulation with Vision. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11740. Springer, Cham. https://doi.org/10.1007/978-3-030-27526-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27526-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27525-9

  • Online ISBN: 978-3-030-27526-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics