Nothing Special   »   [go: up one dir, main page]

Skip to main content

MICHE Competitions: A Realistic Experience with Uncontrolled Eye Region Acquisition

  • Chapter
  • First Online:
Selfie Biometrics

Abstract

People struggle every day with authentication to access a protected service or location, or simply aimed at protecting one’s own devices. This spurs a growing demand for self-handled authentication strategies. The increasing number of remote services of various kinds corresponds to an increasing number of passwords to use and remember, and also to the growth of the password theft risk, due to the increasing value of the protected resources. The other core element in present authentication scenarios is the ubiquity of mobile equipment. Smartphones add a “whatever” dimension to the possible uses of the mobile devices whenever and wherever that include storing/transferring multimedia information, often personal and often sensitive. Biometrics can both enforce and simplify authentication in controlled environments. Mobile biometrics in uncontrolled settings, where there is no operator to guide the capture of a “good-quality” sample on a mobile device, is the new frontier for secure use of data and services. The iris is among the best candidates for biometric recognition. It is extremely discriminative: Right and left irises of the same person are so different to hinder a correct matching, because randotypic elements largely overcome genotypic ones in individual development. However, self-acquired samples often suffer from poor quality, due, e.g., to reflections, motion blurring, out of focus, or bad image framing. Mobile setting and especially the inherent problems related to uncontrolled iris image acquisition are addressed in the two challenges of the MICHE project, whose results are the core topic of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abate A, Barra S, Gallo L, Narducci F (2017a) Skipsom: Skewness & kurtosis of iris pixels in self organizing maps for iris recognition on mobile devices. Institute of Electrical and Electronics Engineers Inc., pp 155–159

    Google Scholar 

  2. Abate AF, Barra S, Fenu G, Nappi M, Narducci F (2017b) A lightweight mamdani fuzzy controller for noise removal on iris images. In: Battiato S, Gallo G, Schettini R, Stanco F (eds) Image analysis and processing—ICIAP 2017. Springer, Cham, pp 93–103

    Chapter  Google Scholar 

  3. Abate AF, Barra S, Gallo L, Narducci F (2017c) Kurtosis and skewness at pixel level as input for SOM networks to iris recognition on mobile devices. Pattern Recogn Lett 91:37–43. Mobile Iris CHallenge Evaluation (MICHE-II)

    Article  Google Scholar 

  4. Abate AF, Frucci M, Galdi C, Riccio D (2015) Bird: watershed based iris detection for mobile devices. Pattern Recogn Lett 57:43–51

    Article  Google Scholar 

  5. Aginako N, Castrill-Santana M, Lorenzo-Navarro J, Martnez-Otzeta JM, Sierra B (2017a). Periocular and iris local descriptors for identity verification in mobile applications. Pattern Recogn Lett 91:52–59. Mobile Iris CHallenge Evaluation (MICHE-II)

    Article  Google Scholar 

  6. Aginako N, Echegaray G, Martnez-Otzeta J, Rodrguez I, Lazkano E Sierra B (2017b) Iris matching by means of machine learning paradigms: a new approach to dissimilarity computation. Pattern Recogn Lett 91:60–64. Mobile Iris CHallenge Evaluation (MICHE-II)

    Article  Google Scholar 

  7. Aginako N, Martínez-Otzerta J, Sierra B, Castrillón-Santana M, Lorenzo-Navarro J (2016a) Local descriptors fusion for mobile iris verification. In 2016 23rd International conference on pattern recognition (ICPR). IEEE, pp 165–169

    Google Scholar 

  8. Aginako N, Martínez-Otzeta JM, Rodriguez I, Lazkano E, Sierra B (2016b) Machine learning approach to dissimilarity computation: Iris matching. In: 2016 23rd International conference on pattern recognition (ICPR). IEEE, pp 170–175

    Google Scholar 

  9. Ahmed NU, Cvetkovic S, Siddiqi EH, Nikiforov A, Nikiforov I (2016) Using fusion of iris code and periocular biometric for matching visible spectrum iris images captured by smart phone cameras. In: 2016 23rd International conference on pattern recognition (ICPR). IEEE, pp 176–180

    Google Scholar 

  10. Ahmed NU, Cvetkovic S, Siddiqi EH, Nikiforov A, Nikiforov I (2017) Combining iris and periocular biometric for matching visible spectrum eye images. Pattern Recogn Lett 91:11–16. Mobile Iris CHallenge Evaluation (MICHE-II)

    Article  Google Scholar 

  11. Ahuja K, Islam R, Barbhuiya FA, Dey K (2016) A preliminary study of CNNs for iris and periocular verification in the visible spectrum. In: 2016 23rd International conference on pattern recognition (ICPR), pp 181–186

    Google Scholar 

  12. Ahuja K, Islam R, Barbhuiya FA, Dey K (2017) Convolutional neural networks for ocular smartphone-based biometrics. Pattern Recogn Lett 91:17–26. Mobile Iris CHallenge Evaluation (MICHE-II)

    Article  Google Scholar 

  13. Alkassar S, Woo W-L, Dlay S, Chambers J (2016) Sclera recognition: on the quality measure and segmentation of degraded images captured under relaxed imaging conditions. IET Biometrics 6(4):266–275

    Article  Google Scholar 

  14. Amjed N, Khalid F, Rahmat RWOK, Madzin HB (2018) Noncircular iris segmentation based on weighted adaptive hough transform using smartphone database. J Comput Theor Nanosci 15(3):739–743

    Article  Google Scholar 

  15. Arandjelovic R, Zisserman A (2012) Three things everyone should know to improve object retrieval. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, pp 2911–2918

    Google Scholar 

  16. Arsalan M, Hong HG, Naqvi RA, Lee MB, Kim MC, Kim DS, Kim CS, Park KR (2017) Deep learning-based iris segmentation for iris recognition in visible light environment. Symmetry 9(11):263

    Google Scholar 

  17. Arsalan M, Naqvi RA, Kim DS, Nguyen PH, Owais M, Park KR (2018) Irisdensenet: robust iris segmentation using densely connected fully convolutional networks in the images by visible light and near-infrared light camera sensors. Sensors 18(5):1501

    Article  Google Scholar 

  18. Barra S, Casanova A, Narducci F, Ricciardi S (2015) Ubiquitous iris recognition by means of mobile devices. Pattern Recogn Lett 57:66–73

    Article  Google Scholar 

  19. Bowyer KW, Burge MJ (2016) Handbook of iris recognition. Springer, London

    Google Scholar 

  20. Clarke R (1994) Human identification in information systems: management challenges and public policy issues. Inf Technol People 7(4):6–37

    Article  Google Scholar 

  21. Daugman J (2009) How iris recognition works. In: The essential guide to image processing. Elsevier, pp 715–739

    Google Scholar 

  22. Daugman JG (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 15(11):1148–1161

    Article  Google Scholar 

  23. De Marsico M, Nappi M, Daniel R (2010) Is\(\_\)is: Iris segmentation for identification systems. In: 2010 20th International conference on pattern recognition (ICPR). IEEE, pp 2857–2860

    Google Scholar 

  24. De Marsico M, Nappi M, Narducci F, Proença H (2018) Insights into the results of miche i-mobile iris challenge evaluation. Pattern Recogn 74:286–304

    Article  Google Scholar 

  25. De Marsico M, Nappi M, Proença H (2017) Results from miche ii-mobile iris challenge evaluation ii. Pattern Recogn Lett 91:3–10

    Article  Google Scholar 

  26. De Marsico M, Nappi M, Riccio D, Wechsler H (2015) Mobile iris challenge evaluation (miche)-i, biometric iris dataset and protocols. Pattern Recogn Lett 57:17–23

    Article  Google Scholar 

  27. Dellana R, Roy K (2016) Data augmentation in CNN-based periocular authentication. Institute of Electrical and Electronics Engineers Inc., pp 141–145

    Google Scholar 

  28. Freire-Obregon D, Narducci F, Barra S, Castrill-Santana M (2018) Deep learning for source camera identification on mobile devices. Pattern Recogn Lett

    Google Scholar 

  29. Galdi C, Dugelay JL (2016) Fusing iris colour and texture information for fast iris recognition on mobile devices. In: 2016 23rd International conference on pattern recognition (ICPR). IEEE, pp 160–164

    Google Scholar 

  30. Galdi C, Dugelay J-L (2017) Fire: fast iris recognition on mobile phones by combining colour and texture features. Pattern Recogn Lett 91:44–51. Mobile Iris CHallenge Evaluation (MICHE-II)

    Article  Google Scholar 

  31. Galdi C, Nappi M, Dugelay J-L (2015) Combining hardwaremetry and biometry for human authentication via smartphones. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 9280, pp 406–416

    Chapter  Google Scholar 

  32. Galdi C, Nappi M, Dugelay J-L (2016) Multimodal authentication on smartphones: combining iris and sensor recognition for a double check of user identity. Pattern Recogn Lett 82:144–153

    Article  Google Scholar 

  33. Haindl M, Krupička M (2015) Unsupervised detection of non-iris occlusions. Pattern Recogn Lett 57:60–65

    Article  Google Scholar 

  34. Hu Y, Sirlantzis K, Howells G (2015) Improving colour iris segmentation using a model selection technique. Pattern Recogn Lett 57:24–32

    Article  Google Scholar 

  35. Huang B, Chen R, Zhou Q, Yu X (2018) Eye landmarks detection via two-level cascaded cnns with multi-task learning. Signal Proces: Image Commun 63:63–71

    Google Scholar 

  36. Jain AK, Dass SC, Nandakumar K (2004) Soft biometric traits for personal recognition systems. In: Biometric authentication. Springer, pp 731–738

    Google Scholar 

  37. Jain AK, Hong L, Pankanti S, Bolle R (1997) An identity-authentication system using fingerprints. Proc IEEE 85(9):1365–1388

    Article  Google Scholar 

  38. Kauba C, Debiasi L, Uhl A (2018) Identifying the origin of iris images based on fusion of local image descriptors and PRNU based techniques, vol 2018-January. Institute of Electrical and Electronics Engineers Inc., pp 294–301

    Google Scholar 

  39. Lee MB, Hong HG, Park KR (2017) Noisy ocular recognition based on three convolutional neural networks. Sensors 17(12):2933

    Google Scholar 

  40. Li Y-H, Huang P-J (2017) An accurate and efficient user authentication mechanism on smart glasses based on iris recognition. Mobile Inf Syst

    Google Scholar 

  41. Liu N, Zhang M, Li H, Sun Z, Tan T (2016) Deepiris: learning pairwise filter bank for heterogeneous iris verification. Pattern Recogn Lett 82:154–161

    Article  Google Scholar 

  42. Lukas J, Fridrich J, Goljan M (2006) Digital camera identification from sensor pattern noise. IEEE Trans Inf Forensics Secur 1(2):205–214

    Article  Google Scholar 

  43. Ma L, Tan T, Wang Y, Zhang D (2003) Personal identification based on iris texture analysis. IEEE Trans Pattern Anal Mach Intell 12:1519–1533

    Google Scholar 

  44. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of eighth IEEE international conference on computer vision, 2001. ICCV 2001, vol 2. IEEE, pp 416–423

    Google Scholar 

  45. Ngiam J, Chen Z, Bhaskar SA, Koh PW, Ng AY (2011) Sparse filtering. In: Advances in neural information processing systems, pp 1125–1133

    Google Scholar 

  46. Nielsen J (2000) Security and human factors. Alertbox (November 2000). http://www.useit.com/alertbox/20001126. html

  47. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  Google Scholar 

  48. Patrick AS (2004) Usability and acceptability of biometric security systems. In: Financial cryptography, p 105

    Chapter  Google Scholar 

  49. Pratt WK (2007) Digital image processing, 4th edn. Wiley, Hoboken, NJ

    Google Scholar 

  50. Proença H, Alexandre LA (2007) The nice. i: noisy iris challenge evaluation-part i. In: First IEEE international conference on biometrics: theory, applications, and systems, 2007. BTAS 2007. IEEE, pp 1–4

    Google Scholar 

  51. Proença H, Alexandre LA (2012) Introduction to the special issue on the recognition of visible wavelength iris images captured at-a-distance and on-the-move. Pattern Recogn Lett 33(8):963–964

    Article  Google Scholar 

  52. Proenca H, Alexandre LA (2012) Toward covert iris biometric recognition: experimental results from the NICE contests. IEEE Trans Inf Forensics Secur 7(2):798–808

    Article  Google Scholar 

  53. Proenca H, Filipe S, Santos R, Oliveira J, Alexandre LA (2010). The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Trans Pattern Anal Mach Intell 32(8):1529–1535

    Article  Google Scholar 

  54. Radman A, Zainal N, Suandi S (2017) Automated segmentation of iris images acquired in an unconstrained environment using HOG-SVM and growcut. Digital Signal Process: Rev J 64:60–70

    Article  MathSciNet  Google Scholar 

  55. Raja KB, Raghavendra R, Vemuri VK, Busch C (2015) Smartphone based visible iris recognition using deep sparse filtering. Pattern Recogn Lett 57:33–42

    Article  Google Scholar 

  56. Raja KB, Raghavendra R, Venkatesh S, Busch C (2017) Multi-patch deep sparse histograms for iris recognition in visible spectrum using collaborative subspace for robust verification. Pattern Recogn Lett 91:27–36. Mobile Iris CHallenge Evaluation (MICHE-II)

    Article  Google Scholar 

  57. Rattani A, Derakhshani R (2017) Ocular biometrics in the visible spectrum: a survey. Image Vis Comput 59:1–16

    Article  Google Scholar 

  58. Rattani A, Reddy N, Derakhshani R (2017) Gender prediction from mobile ocular images: a feasibility study. Institute of Electrical and Electronics Engineers Inc

    Google Scholar 

  59. Reddy N, Rattani A, Derakhshani R (2018) Ocularnet: deep patch-based ocular biometric recognition. In: 2018 IEEE International Symposium on Technologies for Homeland Security (HST). IEEE, pp 1–6

    Google Scholar 

  60. Roerdink JB, Meijster A (2000) The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta informaticae 41(1, 2):187–228

    Google Scholar 

  61. Santos G, Grancho E, Bernardo MV, Fiadeiro PT (2015) Fusing iris and periocular information for cross-sensor recognition. Pattern Recogn Lett 57:52–59

    Article  Google Scholar 

  62. Sasse MA (2007) Red-eye blink, bendy shuffle, and the yuck factor: a user experience of biometric airport systems. IEEE Secur Priv 5(3):78–81

    Article  Google Scholar 

  63. Sasse MA, Brostoff S, Weirich D (2001) Transforming the ‘weakest link’—a human/computer interaction approach to usable and effective security. BT Technol J 19(3):122–131

    Article  Google Scholar 

  64. Sun Z, Wang L, Tan T (2014) Ordinal feature selection for iris and palmprint recognition. IEEE Trans Image Process 23(9):3922–3934

    Article  MathSciNet  Google Scholar 

  65. Tan T, Zhang X, Sun Z, Zhang H (2012) Noisy iris image matching by using multiple cues. Pattern Recogn Lett 33(8):970–977

    Article  Google Scholar 

  66. Wildes RP (1997) Iris recognition: an emerging biometric technology. Proc IEEE 85(9):1348–1363

    Article  Google Scholar 

  67. Zhang H, Tian X, Deng X, Cao Y (2018) Batch process fault detection and identification based on discriminant global preserving kernel slow feature analysis. ISA Trans 79:108–126

    Article  Google Scholar 

  68. Phillips PJ, Bowyer KW, Flynn PJ, Liu X, Scruggs WT (2008, September) The iris challenge evaluation 2005. In: 2008 IEEE second international conference on biometrics: theory, applications and systems. IEEE, pp 1–8

    Google Scholar 

  69. Phillips PJ, Scruggs WT, O’Toole AJ, Flynn PJ, Bowyer KW, Schott CL, Sharpe M (2009) FRVT 2006 and ICE 2006 large-scale experimental results. IEEE Trans Pattern Anal Mach Intell 32(5):831–846

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria De Marsico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barra, S., De Marsico, M., Proença, H., Nappi, M. (2019). MICHE Competitions: A Realistic Experience with Uncontrolled Eye Region Acquisition. In: Rattani, A., Derakhshani, R., Ross, A. (eds) Selfie Biometrics. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-26972-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26972-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26971-5

  • Online ISBN: 978-3-030-26972-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics