Nothing Special   »   [go: up one dir, main page]

Skip to main content

Introduction to Selfie Biometrics

  • Chapter
  • First Online:
Selfie Biometrics

Abstract

Traditional password-based solutions are being predominantly replaced by biometric technology for mobile user authentication. Since the inception of smartphones, smartphone cameras have made substantial progress in image resolution, aperture size, and sensor size. These advances facilitate the use of selfie biometrics such as the self-acquired face, fingerphoto, and ocular region for mobile user authentication. This chapter introduces the topic of selfie biometrics to the readers. Overview of the methods for different selfie biometrics modalities is provided. Liveness detection, soft-biometrics prediction, and cloud-based infrastructure for selfie biometrics are also discussed. Open issues and research directions are included to provide the path forward. The overall aim is to improve the understanding and advance the state-of-the-art in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://petapixel.com/2017/06/16/smartphone-cameras-improved-time/.

  2. 2.

    https://www.computerworld.com/article/2897117/alibaba-uses-facial-recognition-tech-for-online-payments.html.

  3. 3.

    http://www.bbc.com/news/technology-35631456.

  4. 4.

    https://www.technologyreview.com/s/425805/new-google-smart-phone-recognizes-your-face/.

  5. 5.

    http://www.planetbiometrics.com/article-details/i/9918/desc/google-developing-3d-face-authentication/.

  6. 6.

    https://www.airsidemobile.com.

  7. 7.

    https://mobilepassport.us/faq.php.

  8. 8.

    http://newsroom.mastercard.com/eu/press-releases/mastercard-makes-fingerprint-and-selfie-paymenttechnology-a-reality/.

  9. 9.

    https://www.zdnet.com/article/flagship-smartphones-specs-benchmarks-and-prices-for-iphone-samsung-huawei-and-more/.

  10. 10.

    Though not a traditional selfie capture per se, and given its commonalities with selfie mobile biometrics, we have included it among other selfie modalities.

References

  1. Jain A, Ross A, Nandakumar A (2011) Introduction to biometrics. Springer Publishers

    Google Scholar 

  2. Han S, Park H, Cho D, Park D, Lee S (2007) Face recognition based on near-infrared light using mobile phone. In: Beliczynski B, Dzielinski A, Iwanowski M, Ribeiro B (eds) Adaptive and natural computing algorithms, vol 4432. Lecture Notes in Computer Science. Springer, Heidelberg, pp 440–448

    Chapter  Google Scholar 

  3. Jung S, Chung Y, Yoo J, Moon K (2008) Real-time face verification for mobile platforms. In: Bebis G, Boyle R, Parvin B, Koracin D, Remagnino P, Porikli F, Peters J, Klosowski J, Arns L, Chun Y, Rhyne T, Monroe L (eds) Advances in visual computing, vol 5359. Lecture Notes in Computer Science. Springer, Heidelberg, pp 823–832

    Chapter  Google Scholar 

  4. Tao Q, Veldhuis R (2006) Biometric authentication for a mobile personal device. In: Third annual international conference on mobile and ubiquitous systems: networking services, San Jose, CA, pp 1–3

    Google Scholar 

  5. Walgamage T, Farook C (2014) A real-time hybrid approach for mobile face recognition. In: International conference on intelligent systems, modelling and simulation, pp 1–6

    Google Scholar 

  6. Rattani A, Derakhshani R (2017) Ocular biometrics in the visible spectrum: a survey. Image Vis Comput 59:1–16

    Article  Google Scholar 

  7. Rattani A, Derakhshani R (2017) On fine-tuning convolutional neural networks for smartphone based ocular recognition. In: IEEE international joint conference on biometrics (IJCB), pp 762–767

    Google Scholar 

  8. Sankaran A, Malhotra A, Mittal A, Vatsa M, Singh R (2015) On smartphone camera based fingerphoto authentication. In: IEEE 7th international conference on biometrics theory, applications and systems, pp 1–7

    Google Scholar 

  9. Maiorana E, Campisi P, González-Carballo N, Neri A (2011) Keystroke dynamics authentication for mobile phones. In: ACM symposium on applied computing, New York, NY, USA, pp 21–26

    Google Scholar 

  10. Derawi MO, Nickel C, Bours P, Busch C (2010) Unobtrusive user-authentication on mobile phones using biometric gait recognition. In: Sixth international conference on intelligent information hiding and multimedia signal processing, pp 306–311

    Google Scholar 

  11. Tao Q, Veldhuis R (2010) Biometric authentication system on mobile personal devices. IEEE Trans Instrum Measur 59(4):763–773

    Article  Google Scholar 

  12. Chen B, Shen J, Sun H (2012) A fast face recognition system on mobile phone. In: International conference on systems and informatics, Yantai, pp 1783–1786

    Google Scholar 

  13. Yang J, Chen X, Kunz W (2002) A PDA-based face recognition system. In: Sixth IEEE workshop on applications of computer vision, pp 19–23

    Google Scholar 

  14. Doukas C, Maglogiannis I (2010) A fast mobile face recognition system for android os based on eigenfaces decomposition. In: Papadopoulos H, Andreou A, Bramer M (eds) Artificial intelligence applications and innovations, vol 339. IFIP Advances in Information and Communication Technology. Springer, Heidelberg, pp 295–302

    Chapter  Google Scholar 

  15. Kumar S, Singh P, Kumar V (2010) Architecture for mobile based face detection/recognition. Int J Comput Sci Eng 2(3):889–894

    Google Scholar 

  16. Yu H (2010) Face recognition for mobile phone using eigenfaces. University of Michigan, Tech. rep

    Google Scholar 

  17. Findling RD, Mayrhofer R (2012) Towards face unlock: on the difficulty of reliably detecting faces on mobile phones. In: International conference on advances in mobile computing and multimedia, Bali, Indonesia, pp 275–280

    Google Scholar 

  18. Kremic E, Subasi A, Hajdarevic K (2012) Face recognition implementation for client server mobile architecture. In: International conference on information technology interfaces, Dubrovnik, Croatia, pp 435–440

    Google Scholar 

  19. Mukherjee S, Chen Z, Gangopadhyay A, Russell A (2008) A secure face recognition system for mobile-devices without the need of decryption. In: Workshop on secure knowledge management, pp 11–16

    Google Scholar 

  20. Schneider C, Esau N, Kleinjohann L, Kleinjohann B (2006) Feature based face localization and recognition on mobile devices. In: International conference on control, automation, robotics and vision, Singapore, pp 1–6

    Google Scholar 

  21. Rattani A, Derakhshani R (2018) A survey of mobile face biometrics. Comput Electr Eng 72:39–52. https://doi.org/10.1016/j.compeleceng.2018.09.005, http://www.sciencedirect.com/science/article/pii/S004579061730650X

    Article  Google Scholar 

  22. Gnther M, Costa-Pazo A, Ding C, Boutellaa E, Chiachia G, Zhang H, de Assis Angeloni M, Truc V, Khoury E, Vazquez-Fernandez E, Tao D, Bengherabi M, Cox D, Kiranyaz S, de Freitas Pereira T, Ganec Gros J, Argones-Ra E, Pinto N, Gabbouj M, Simes F, Dobriek S, Gonzlez-Jimnez D, Rocha A, Neto MU, Pavei N, Falco A, Violato R, Marcel S (2013) The 2013 face recognition evaluation in mobile environment. In: International conference on biometrics, Madrid, pp 1–7

    Google Scholar 

  23. Das A, Pal U, Ballester M, Blumenstein M (2014) A new efficient and adaptive sclera recognition system. In: IEEE symposium on computational intelligence in biometrics and identity management (CIBIM), pp 1–8

    Google Scholar 

  24. Park U, Ross A, Jain A (2009) Periocular biometrics in the visible spectrum: a feasibility study. In: IEEE 3rd international conference on biometrics: theory applications and systems, pp 1–6

    Google Scholar 

  25. Marsico MD, Nappi M, Proena H (2017) Results from miche ii mobile iris challenge evaluation ii, Pattern Recogn Lett 91(C):3–10

    Google Scholar 

  26. Reddy N, Rattani A, Derakhshani R (2018) Ocularnet: deep patch-based ocular biometric recognition. In: 2018 IEEE international symposium on technologies for homeland security (HST), pp 1–6. https://doi.org/10.1109/THS.2018.8574156

  27. Rattani A, Derakhshani R, Saripalle SK, Gottemukkula V (2016) ICIP 2016 competition on mobile ocular biometric recognition. In: IEEE International Conference on image processing, challenge session on mobile ocular biometric recognition, Phoenix, AZ, pp 320–324

    Google Scholar 

  28. Stein C, Nickel C, Busch C (2012) Fingerphoto recognition with smartphone cameras. In: BIOSIG—Proceedings of the international conference of biometrics special interest group, pp 1–12

    Google Scholar 

  29. Carney LA, Kane J, Mather JF, Othman A, Simpson AG, Tavanai A, Tyson RA, Xue Y (2017) A multi-finger touchless fingerprinting system: mobile fingerphoto and legacy database interoperability. In: Proceedings of the 2017 4th international conference on biomedical and bioinformatics engineering, ICBBE 2017, New York, NY, USA, pp 139–147

    Google Scholar 

  30. Chingovska I, dos Anjos AR, Marcel S (2014) Biometrics evaluation under spoofing attacks. IEEE Trans Inf Forensics Secur 9(12):2264–2276

    Article  Google Scholar 

  31. Liu S, Yang B, Yuen P, Zhao G (2016) A 3D mask face anti-spoofing database with real world variations. In: The IEEE conference on computer vision and pattern recognition (CVPR) workshops, pp 1551–1557

    Google Scholar 

  32. Patel K, Han H, Jain AK (2016) Cross-database face antispoofing with robust feature representation. In: You Z, Zhou J, Wang Y, Sun Z, Shan S, Zheng W, Feng J, Zhao Q (eds) Biometric recognition. Springer International Publishing, Cham, pp 611–619

    Chapter  Google Scholar 

  33. Siddiqui IA, Bharadwaj S, Dhamecha TI, Agarwal A, Vatsa M, Singh R, Ratha N (2016) Face anti-spoofing with multifeature videolet aggregation. In: International conference on pattern recognition, Cancun, pp 1035–1040

    Google Scholar 

  34. Tirunagari S, Poh N, Windridge D, Iorliam A, Suki N, Ho ATS (2015) Detection of face spoofing using visual dynamics. IEEE Trans Inf Forensics Secur 10(4):762–777

    Article  Google Scholar 

  35. Pinto A, Pedrini H, Schwartz WR, Rocha A (2015) Face spoofing detection through visual codebooks of spectral temporal cubes. IEEE Trans Image Process 24(12):4726–4740

    Article  MathSciNet  Google Scholar 

  36. Akhtar Z, Michelon C, Foresti GL (2014) Liveness detection for biometric authentication in mobile applications. In: 2014 international Carnahan conference on security technology, Rome, pp 1–6

    Google Scholar 

  37. Chingovska I, Anjos A, Marcel S (2012) On the effectiveness of local binary patterns in face anti-spoofing. In: International conference of biometrics special interest group (BIOSIG), Germany, pp 1–7

    Google Scholar 

  38. Boulkenafet Z, Komulainen J, Li L, Feng X, Hadid A (2017) OULU-NPU: a mobile face presentation attack database with real-world variations. In: IEEE international conference on automatic face gesture recognition, Washington, DC, pp 612–618

    Google Scholar 

  39. Costa-Pazo A, Bhattacharjee S, Vazquez-Fernandez E, Marcel S (2016) The replay-mobile face presentation-attack database. In: International conference of the biometrics special interest group, Germany, pp 1–7

    Google Scholar 

  40. Boulkenafet Z, Komulainen J, Hadid A (2016) Face spoofing detection using colour texture analysis. IEEE Trans Inf Forensics Secur 11(8):1818–1830

    Article  Google Scholar 

  41. Arashloo SR, Kittler J, Christmas W (2015) Face spoofing detection based on multiple descriptor fusion using multiscale dynamic binarized statistical image features. IEEE Trans Inf Forensics Secur 10(11):2396–2407

    Article  Google Scholar 

  42. Gan J, Li S, Zhai Y, Liu C (2017) 3D convolutional neural network based on face anti-spoofing. In: International conference on multimedia and image processing, Wuhan, pp 1–5

    Google Scholar 

  43. Atoum Y, Liu Y, Jourabloo A, Liu X (2017) Face anti-spoofing using patch and depth-based CNNs. In: IEEE international joint conference on biometrics, Denver, CO, pp 319–328

    Google Scholar 

  44. Pereira F, Komulainen J, Anjos A, Martino MD, Hadid A, Pietikäinen M, Marcel S (2014) Face liveness detection using dynamic texture. EURASIP J Image Video Process 2014(1):2

    Article  Google Scholar 

  45. Patel K, Han H, Jain AK, Ott G (2015) Live face video vs. spoof face video: use of moire patterns to detect replay video attacks. In: International conference on biometrics, Phuket, pp 98–105

    Google Scholar 

  46. Wen D, Han H, Jain AK (2015) Face spoof detection with image distortion analysis. IEEE Trans Inf Forensics Secur 10(4):746–761

    Article  Google Scholar 

  47. Galbally J, Marcel S (2014) Face anti-spoofing based on general image quality assessment. In: International conference on pattern recognition, Stockholm, pp 1173–1178

    Google Scholar 

  48. Boulkenafet Z, Komulainen J, Akhtar Z, Benlamoudi A, Samai D, Bekhouche SE, Ouafi A, Dornaika F, Taleb-Ahmed A, Qin L, Peng F, Zhang LB, Long M, Bhilare S, Kanhangad V, Costa-Pazo A, Vazquez-Fernandez E, Perez-Cabo D, Moreira-Perez JJ, Gonzalez-Jimenez D, Mohammadi A, Bhattacharjee S, Marcel S, Volkova S, Tang Y, Abe N, Li L, Feng X, Xia Z, Jiang X, Liu S, Shao R, Yuen PC, Almeida WR, Andalo F, Padilha R, Bertocco G, Dias W, Wainer J, Torres R, Rocha A, Angeloni MA, Folego G, Godoy A, Hadid A (2017) A competition on generalized software-based face presentation attack detection in mobile scenarios. In: IEEE international joint conference on biometrics, Denver, CO, pp 688–696

    Google Scholar 

  49. Taneja A, Tayal A, Malhorta A, Sankaran A, Vatsa M, Singh R (2016) Fingerphoto spoofing in mobile devices: a preliminary study. In: IEEE international conference on biometrics theory, applications and systems, pp 1–7

    Google Scholar 

  50. Stein C, Bouatou V, Busch C (2013) Video-based fingerphoto recognition with anti-spoofing techniques with smartphone cameras. In: International conference of the BIOSIG Special Interest Group (BIOSIG), pp 1–12

    Google Scholar 

  51. Fujio M, Kaga Y, MurakamiT, Ohki T, Takahashi K (2018) Face/fingerphoto spoof detection under noisy conditions by using deep convolutional neural network. In: International joint conference on biomedical engineering systems and technologies, pp 54–62

    Google Scholar 

  52. Sequeira AF, Murari J, Cardoso JS (2014) Iris liveness detection methods in the mobile biometrics scenario. In: International joint conference on neural networks (IJCNN), pp 3002–3008

    Google Scholar 

  53. Sequeira AF, Oliveira HP, Monteiro JC, Monteiro JP, Cardoso JS (2014) Mobilive 2014 mobile iris liveness detection competition. In: IEEE international joint conference on biometrics, pp 1–6

    Google Scholar 

  54. Talreja V, Ferrett T, Valenti MC, Ross A (2018) Biometrics-as-a-service: a framework to promote innovative biometric recognition in the cloud. In: IEEE international conference on consumer electronics (ICCE), pp 1–6

    Google Scholar 

  55. Mell P, Granc T (2011) The nist definition of cloud computing. Tech. rep, Recommendations of the National Institute of Standards and Technology

    Google Scholar 

  56. Chow R, Jakobsson M, Masuoka R, Molina J, Niu Y, Shi E, Song Z (2010) Authentication in the clouds: a framework and its application to mobile users. In: ACM cloud computing security workshop (CCSW), New York, NY, USA, pp 1–6

    Google Scholar 

  57. Barra S, Casanova A, Narducci F, Ricciardi S (2015) Ubiquitous iris recognition by means of mobile devices. Pattern Recogn Lett 57:66–73

    Article  Google Scholar 

  58. Patel VM, Chellappa R, Chandra D, Barbello B (2016) Continuous user authentication on mobile devices: recent progress and remaining challenges. IEEE Signal Process Mag 33(4):49–61

    Article  Google Scholar 

  59. Rattani A, Reddy N, Derakhshani R (2017) Gender prediction from mobile ocular images: a feasibility study. In: IEEE international symposium on technologies for homeland security, pp 1–6

    Google Scholar 

  60. Buriro A, Akhtar Z, Crispo B, Frari FD (2016) Age, gender and operating-hand estimation on smart mobile devices. In: International conference of the biometrics special interest group, pp 1–5

    Google Scholar 

  61. Rattani A, Reddy N, Derakhshani R (2018) Convolutional neural networks for gender prediction from smartphone-based ocular images. IET Biometrics 7:423–430

    Article  Google Scholar 

  62. Rattani A, Reddy N, Derakhshani R (2017) Convolutional neural network for age classification from smart-phone based ocular images. In: 2017 IEEE international joint conference on biometrics (IJCB), pp 756–761. https://doi.org/10.1109/BTAS.2017.8272766

  63. Mohammad AS, Rattani A, Derahkshani R (2017) Eyeglasses detection based on learning and non-learning based classification schemes. In: IEEE international symposium on technologies for homeland security (HST), pp 1–5. https://doi.org/10.1109/THS.2017.7943484

  64. Mohammad AS, Rattani A, Derakhshani R (2018) Short-term user authentication using eyebrows biometric for smartphone devices. In: IEEE computer science and electronic engineering conference, pp 1 – 6

    Google Scholar 

  65. Nguyen H, Sai R, Li Z, Derakhshan R (2018) User re-identification using clothing information for smartphones. In: IEEE international symposium on technologies for homeland security (HST), pp 1–5

    Google Scholar 

  66. Samangouei P, Patel VM, Chellappa R (2015) Attribute-based continuous user authentication on mobile devices. In: IEEE 7th international conference on biometrics theory, applications and systems (BTAS), pp 1–8

    Google Scholar 

  67. Rattani A, Scheirer WJ, Ross A (2015) Open set fingerprint spoof detection across novel fabrication materials. IEEE Trans Inf Forensics Secur 10(11):2447–2460

    Article  Google Scholar 

  68. Schroff F, Kalenichenko D, Philbin J. FaceNet: a unified embedding for face recognition and clustering, CoRR abs/1503.03832

    Google Scholar 

  69. Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. In: Leibe B, Matas J, Sebe N, Welling M (eds) European conference on computer vision. Cham, pp 499–515

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajita Rattani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rattani, A., Derakhshani, R., Ross, A. (2019). Introduction to Selfie Biometrics. In: Rattani, A., Derakhshani, R., Ross, A. (eds) Selfie Biometrics. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-26972-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26972-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26971-5

  • Online ISBN: 978-3-030-26972-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics