Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Weight Learning Approach Based on Density for Accurate Prediction of Atherosclerosis

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

Abstract

Cardiovascular diseases (CVD) are the leading cause of death in the world. Based on density-based spatial clustering of applications with noise algorithm (DBSCAN), we proposed a weight learning approach to utilize the density information of the patient data. The proposed approach divided the sample points of dataset into three types with different weight of density, so that machine learning models achieved better performance in early diagnosis of CVD. Cross-validation on UCI dataset shown that the traditional machine learning models after weight learning can improve accuracy more than 10%.

J. Xie, R. Wu and H. Wang—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dimmeler, S., Zeiher, A.M.: Circulating microRNAs: novel biomarkers for cardiovascular diseases? Eur. Heart J. 90(8), 865–875 (2012)

    Google Scholar 

  2. Eeg-Olofsson, K., Cederholm, J., et al.: New aspects of HbA1c as a risk factor for cardiovascular diseases in type 2 diabetes: an observational study from the Swedish National Diabetes Register (NDR). J. Intern. Med. 268(5), 471–482 (2010)

    Article  Google Scholar 

  3. Nordestgaard, B.G., Varbo, A.: Triglycerides and cardiovascular disease. Lancet 384(9943), 626–635 (2014)

    Article  Google Scholar 

  4. Members, W.G., Mozaffarian, D., et al.: Heart disease and stroke statistics-2016 update: a report from the american heart association. Circulation 133(4), e38 (2016)

    Google Scholar 

  5. Eleni, R., Adam, T., et al.: Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 383(9932), 1899–1911 (2014)

    Article  Google Scholar 

  6. Couturier, O., Delalin, H., et al.: A three-step approach for stulong database analysis: characterization of patients groups. In: Proceeding of the ECML/PKDD (2004)

    Google Scholar 

  7. Rao, V.S., Kumar, M.N.: Novel approaches for predicting risk factors of atherosclerosis. IEEE J. Biomed. Health Inform. 17(1), 183–189 (2013)

    Article  Google Scholar 

  8. Hedeshi, N.G., Abadeh, M.S.: Coronary artery disease detection using a fuzzy-boosting PSO Approach. Comput. Intell. Neurosci. 2014, 1–12 (2014)

    Article  Google Scholar 

  9. Kumar, P.R., Priya, M.: Classification of atherosclerotic and non-atherosclerotic individuals using multiclass state vector machine. Technol. Health Care 22(4), 583–595 (2014)

    Article  Google Scholar 

  10. Nikan, S., Gwadry-Sridhar, F., et al.: Machine learning application to predict the risk of coronary artery atherosclerosis. In: International Conference on Computational Science and Computational Intelligence, pp. 34–39 (2017)

    Google Scholar 

  11. Ester, M., Kriegel, H.P., et al.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  12. Kumar, K.M., Reddy, A.R.M.: A fast DBSCAN clustering algorithm by accelerating neighbor searching using Groups method. Pattern Recogn. 58(3), 39–48 (2016)

    Article  Google Scholar 

  13. Schubert, E., Sander, J., et al.: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 42(3), 1–21 (2017)

    Article  MathSciNet  Google Scholar 

  14. Debnath, M., Tripathi, P.K., et al.: K-DBSCAN: identifying spatial clusters with differing density levels. In: International Workshop on Data Mining with Industrial Applications, pp. 51–60 (2016)

    Google Scholar 

  15. Dudik, J.M., Kurosu, A., et al.: A comparative analysis of DBSCAN, K-means, and quadratic variation algorithms for automatic identification of swallows from swallowing accelerometry signals. Comput. Biol. Med. 59(8), 10–18 (2015)

    Article  Google Scholar 

  16. Hron, K., Templ, M., et al.: Imputation of missing values for compositional data using classical and robust methods. Comput. Stat. Data Anal. 54(12), 3095–3107 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kang, P.: Locally linear reconstruction based missing value imputation for supervised learning. Neurocomputing 118(11), 65–78 (2013)

    Article  Google Scholar 

  18. Souto, D., Marcilio, C.P., et al.: Impact of missing data imputation methods on gene expression clustering and classification. BMC Bioinform. 16(1), 1–9 (2015)

    Article  Google Scholar 

  19. Zhu, X., Zhang, S., et al.: Missing value estimation for mixed-attribute data sets. IEEE Trans. Knowl. Data Eng. 23(1), 110–121 (2010)

    Article  MathSciNet  Google Scholar 

  20. Eskelson, B.N.I., Temesgen, H., et al.: The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases. Scand. J. For. Res. 24(3), 235–246 (2009)

    Article  Google Scholar 

  21. Jiang, X., Haitao, W., et al.: A novel hybrid subset-learning method for predicting risk factors of atherosclerosis. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 2124–2131 (2017)

    Google Scholar 

  22. Cai, D., Chiyuan, Z., et al.: Unsupervised feature selection for multi-cluster data. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2010)

    Google Scholar 

  23. Pal, M., Foody, G.M.: Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. 48(5), 2297–2307 (2010)

    Article  Google Scholar 

  24. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)

    Article  Google Scholar 

  25. Klein, J.P., Wu, J.T.: Discretizing a continuous covariate in survival studies. Handb. Stat. 23(03), 27–42 (2003)

    Article  MathSciNet  Google Scholar 

  26. Scott, D.W.: Sturges’ rule. Wiley Interdisc. Rev. Comput. Stat. 1(3), 303–306 (2010)

    Article  Google Scholar 

  27. Scikit-learn Machine Learning in Python. https://scikit-learn.org/stable/

  28. Vehtari, A., Gelman, A., et al.: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27(5), 1413–1432 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Confusion matrix. https://en.wikipedia.org/wiki/Confusion_matrix

  30. Dua, D., Graff, C.: UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. University of California, School of Information and Computer Science (2017)

  31. Setiawan, N.A., Venkatachalam, P.A., et al.: Rule selection for coronary artery disease diagnosis based on rough set. Int. J. Recent Trends Eng. 2(5), 198–202 (2009)

    Google Scholar 

  32. Palaniappan, S., Awang, R.: Intelligent heart disease prediction system using data mining techniques. In: IEEE/ACS International Conference on Computer Systems and Applications (2008)

    Google Scholar 

  33. Alizadehsani, R., Habibi, J., et al.: A data mining approach for diagnosis of coronary artery disease. Comput. Methods Program. Biomed. 111(1), 52–61 (2013)

    Article  Google Scholar 

  34. Rajeswari, K., Vaithiyanathan, V., et al.: Feature selection for classification in medical data mining. Int. J. Emerg. Trends Technol. Comput. Sci. 2(2), 492–497 (2013)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China [No. 2017YFB0701501], the National Natural Science Foundation of China [No. 61873156] and the Project of NSFS [No. 17ZR1409900].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Xie or Wu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, J., Wu, R., Wang, H., Kong, Y., Li, H., Zhang, W. (2019). A Novel Weight Learning Approach Based on Density for Accurate Prediction of Atherosclerosis. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics