Abstract
We study the communication complexity of unconditionally secure MPC with guaranteed output delivery over point-to-point channels for corruption threshold \(t < n/3\). We ask the question: “is it possible to construct MPC in this setting s.t. the communication complexity per multiplication gate is linear in the number of parties?” While a number of works have focused on reducing the communication complexity in this setting, the answer to the above question has remained elusive for over a decade.
We resolve the above question in the affirmative by providing an MPC with communication complexity \(O(Cn\kappa + n^3\kappa )\) where \(\kappa \) is the size of an element in the field, C is the size of the (arithmetic) circuit, and, n is the number of parties. This represents a strict improvement over the previously best known communication complexity of \(O(Cn\kappa +D_Mn^2\kappa +n^3\kappa )\) where \(D_M\) is the multiplicative depth of the circuit. To obtain this result, we introduce a novel technique called 4-consistent tuples of sharings which we believe to be of independent interest.
V. Goyal and Y. Song—Research supported in part by a JP Morgan Faculty Fellowship, a gift from Ripple, a gift from DoS Networks, a grant from Northrop Grumman, and, a Cylab seed funding award.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Araki, T., et al.: Optimized honest-majority MPC for malicious adversaries - breaking the 1 billion-gate per second barrier. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 843–862. IEEE (2017)
Beaver, D.: Multiparty protocols tolerating half faulty processors. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_49
Berman, P., Garay, J.A., Perry, K.J.: Bit optimal distributed consensus. In: Baeza-Yates, R., Manber, U. (eds.) Computer Science, pp. 313–321. Springer, Heidelberg (1992). https://doi.org/10.1007/978-1-4615-3422-8_27
Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Threshold multi-key FHE and applications to MPC. Cryptology ePrint Archive, Report 2018/580 (2018). https://eprint.iacr.org/2018/580
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1988)
Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure multiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_39
Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure MPC with linear communication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_13
Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM (1988)
Chaum, D., Damgård, I.B., van de Graaf, J.: Multiparty computations ensuring privacy of each party’s input and correctness of the result. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 87–119. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_7
Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_2
Coan, B.A., Welch, J.L.: Modular construction of a byzantine agreement protocol with optimal message bit complexity. Inf. Comput. 97(1), 61–85 (1992)
Damgård, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_30
Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_23
Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_32
Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-party computation for malicious adversaries and an honest majority. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_8
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)
Hirt, M., Maurer, U.: Robustness for free in unconditional multi-party computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_6
Hirt, M., Maurer, U., Przydatek, B.: Efficient secure multi-party computation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_12
Hirt, M., Nielsen, J.B.: Robust multiparty computation with linear communication complexity. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 463–482. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_28
Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 259–276. ACM (2017)
Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. J. Cryptol. 25(4), 680–722 (2012)
Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)
Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_40
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC 1989, pp. 73–85. ACM, New York (1989)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, SFCS 2008, pp. 160–164. IEEE (1982)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Goyal, V., Liu, Y., Song, Y. (2019). Communication-Efficient Unconditional MPC with Guaranteed Output Delivery. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11693. Springer, Cham. https://doi.org/10.1007/978-3-030-26951-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-26951-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26950-0
Online ISBN: 978-3-030-26951-7
eBook Packages: Computer ScienceComputer Science (R0)