Nothing Special   »   [go: up one dir, main page]

Skip to main content

Communication-Efficient Unconditional MPC with Guaranteed Output Delivery

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2019 (CRYPTO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11693))

Included in the following conference series:

Abstract

We study the communication complexity of unconditionally secure MPC with guaranteed output delivery over point-to-point channels for corruption threshold \(t < n/3\). We ask the question: “is it possible to construct MPC in this setting s.t. the communication complexity per multiplication gate is linear in the number of parties?” While a number of works have focused on reducing the communication complexity in this setting, the answer to the above question has remained elusive for over a decade.

We resolve the above question in the affirmative by providing an MPC with communication complexity \(O(Cn\kappa + n^3\kappa )\) where \(\kappa \) is the size of an element in the field, C is the size of the (arithmetic) circuit, and, n is the number of parties. This represents a strict improvement over the previously best known communication complexity of \(O(Cn\kappa +D_Mn^2\kappa +n^3\kappa )\) where \(D_M\) is the multiplicative depth of the circuit. To obtain this result, we introduce a novel technique called 4-consistent tuples of sharings which we believe to be of independent interest.

V. Goyal and Y. Song—Research supported in part by a JP Morgan Faculty Fellowship, a gift from Ripple, a gift from DoS Networks, a grant from Northrop Grumman, and, a Cylab seed funding award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Araki, T., et al.: Optimized honest-majority MPC for malicious adversaries - breaking the 1 billion-gate per second barrier. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 843–862. IEEE (2017)

    Google Scholar 

  2. Beaver, D.: Multiparty protocols tolerating half faulty processors. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_49

    Chapter  Google Scholar 

  3. Berman, P., Garay, J.A., Perry, K.J.: Bit optimal distributed consensus. In: Baeza-Yates, R., Manber, U. (eds.) Computer Science, pp. 313–321. Springer, Heidelberg (1992). https://doi.org/10.1007/978-1-4615-3422-8_27

    Chapter  Google Scholar 

  4. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Threshold multi-key FHE and applications to MPC. Cryptology ePrint Archive, Report 2018/580 (2018). https://eprint.iacr.org/2018/580

  5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1988)

    Google Scholar 

  6. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure multiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_39

    Chapter  Google Scholar 

  7. Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure MPC with linear communication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_13

    Chapter  Google Scholar 

  8. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM (1988)

    Google Scholar 

  9. Chaum, D., Damgård, I.B., van de Graaf, J.: Multiparty computations ensuring privacy of each party’s input and correctness of the result. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 87–119. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_7

    Chapter  Google Scholar 

  10. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_2

    Chapter  Google Scholar 

  11. Coan, B.A., Welch, J.L.: Modular construction of a byzantine agreement protocol with optimal message bit complexity. Inf. Comput. 97(1), 61–85 (1992)

    Article  MathSciNet  Google Scholar 

  12. Damgård, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_30

    Chapter  Google Scholar 

  13. Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_23

    Chapter  Google Scholar 

  14. Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_32

    Chapter  Google Scholar 

  15. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-party computation for malicious adversaries and an honest majority. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_8

    Chapter  Google Scholar 

  16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)

    Google Scholar 

  17. Hirt, M., Maurer, U.: Robustness for free in unconditional multi-party computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_6

    Chapter  MATH  Google Scholar 

  18. Hirt, M., Maurer, U., Przydatek, B.: Efficient secure multi-party computation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_12

    Chapter  Google Scholar 

  19. Hirt, M., Nielsen, J.B.: Robust multiparty computation with linear communication complexity. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 463–482. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_28

    Chapter  Google Scholar 

  20. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 259–276. ACM (2017)

    Google Scholar 

  21. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. J. Cryptol. 25(4), 680–722 (2012)

    Article  MathSciNet  Google Scholar 

  22. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  Google Scholar 

  23. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_40

    Chapter  Google Scholar 

  24. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  25. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC 1989, pp. 73–85. ACM, New York (1989)

    Google Scholar 

  26. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  27. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, SFCS 2008, pp. 160–164. IEEE (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goyal, V., Liu, Y., Song, Y. (2019). Communication-Efficient Unconditional MPC with Guaranteed Output Delivery. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11693. Springer, Cham. https://doi.org/10.1007/978-3-030-26951-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26951-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26950-0

  • Online ISBN: 978-3-030-26951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics