Abstract
We introduce and study the notion of fully linear probabilistically checkable proof systems. In such a proof system, the verifier can make a small number of linear queries that apply jointly to the input and a proof vector.
Our new type of proof system is motivated by applications in which the input statement is not fully available to any single verifier, but can still be efficiently accessed via linear queries. This situation arises in scenarios where the input is partitioned or secret-shared between two or more parties, or alternatively is encoded using an additively homomorphic encryption or commitment scheme. This setting appears in the context of secure messaging platforms, verifiable outsourced computation, PIR writing, private computation of aggregate statistics, and secure multiparty computation (MPC). In all these applications, there is a need for fully linear proof systems with short proofs.
While several efficient constructions of fully linear proof systems are implicit in the interactive proofs literature, many questions about their complexity are open. We present several new constructions of fully linear zero-knowledge proof systems with sublinear proof size for “simple” or “structured” languages. For example, in the non-interactive setting of fully linear PCPs, we show how to prove that an input vector \(x\in {\mathbb {F}}^n\), for a finite field \({\mathbb {F}}\), satisfies a single degree-2 equation with a proof of size \(O(\sqrt{n})\) and \(O(\sqrt{n})\) linear queries, which we show to be optimal. More generally, for languages that can be recognized by systems of constant-degree equations, we can reduce the proof size to \(O(\log n)\) at the cost of \(O(\log n)\) rounds of interaction.
We use our new proof systems to construct new short zero-knowledge proofs on distributed and secret-shared data. These proofs can be used to improve the performance of the example systems mentioned above.
Finally, we observe that zero-knowledge proofs on distributed data provide a general-purpose tool for protecting MPC protocols against malicious parties. Applying our short fully linear PCPs to “natural” MPC protocols in the honest-majority setting, we can achieve unconditional protection against malicious parties with sublinear additive communication cost. We use this to improve the communication complexity of recent honest-majority MPC protocols. For instance, using any pseudorandom generator, we obtain a 3-party protocol for Boolean circuits in which the amortized communication cost is only one bit per AND gate per party (compared to 10 bits in the best previous protocol), matching the best known protocols for semi-honest parties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This is akin to proofs of proximity [21], which place a more stringent restriction on the verifier’s access to the input. However, unlike proofs of proximity, in fully linear PCPs the verifier is guaranteed that the input is actually in the language rather than being “close” to some input the language. Another related notion is that of a holographic proof [9, 57], where the verifier gets oracle access to an encoding of the input using an arbitrary error-correcting code.
- 2.
- 3.
References
Aaronson, S., Wigderson, A.: Algebrization: a new barrier in complexity theory. ACM Trans. Comput. Theory (TOCT) 1(1), 2 (2009)
Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: CCS (2017)
Andrew, C.C.Y.: Some complexity questions related to distributed computing. In: STOC (1979)
Araki, T., et al.: Optimized honest-majority MPC for malicious adversaries - breaking the 1 billion-gate per second barrier. In: IEEE Symposium on Security and Privacy (2017)
Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: ACM CCS (2016)
Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)
Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM 45(1), 70–122 (1998)
Babai, L.: Trading group theory for randomness. In: STOC (1985)
Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: STOC (1991)
Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)
Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical and privacy-preserving proofs on authenticated data. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015 (2015)
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: CCS (1993)
Ben-Or, M., et al.: Everything provable is provable in zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_4
Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive proofs: how to remove intractability assumptions. In: STOC (1988)
Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046 (2018)
Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner, N.: On probabilistic checking in perfect zero knowledge. In: Electronic Colloquium on Computational Complexity (ECCC), no. 156 (2016)
Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive oracle proofs with constant rate and query complexity. In: ICALP (2017)
Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_6
Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. Cryptology ePrint Archive, Report 2018/828 (2018). https://eprint.iacr.org/2018/828
Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_2
Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36(4), 889–974 (2006)
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012 (2012)
Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_18
Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988 (1988)
Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their application to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_9
Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear multi-prover interactive proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 222–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_8
Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12
Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_12
Bootle, J., Groth, J.: Efficient batch zero-knowledge arguments for low degree polynomials. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 561–588. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_19
Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: CCS (2016)
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: efficient range proofs for confidential transactions. Cryptology ePrint Archive, Report 2017/1066 (2017)
Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5
Chakrabarti, A., Cormode, G., McGregor, A., Thaler, J.: Annotations in data streams. ACM Trans. Algorithms 11(1), 7 (2014)
Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_2
Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming interactive proofs. In: ITCS (2012)
Cormode, G., Thaler, J., Yi, K.: Verifying computations with streaming interactive proofs. Proc. VLDB Endow. 5(1), 25–36 (2011)
Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of aggregate statistics. In: NSDI (2017)
Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous messaging system handling millions of users. In: Symposium on Security and Privacy (2015)
Costello, C., et al.: Geppetto: versatile verifiable computation. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015 (2015)
Couteau, G.: A note on the communication complexity of multiparty computation in the correlated randomness model. IACR Cryptology ePrint Archive 2018, 465 (2018)
Damgård, I., Luo, J., Oechsner, S., Scholl, P., Simkin, M.: Compact zero-knowledge proofs of small hamming weight. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 530–560. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_18
Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_32
Damgård, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The tinytable protocol for 2-party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 167–187. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_6
Eerikson, H., Orlandi, C., Pullonen, P., Puura, J., Simkin, M.: Use your brain! Arithmetic 3PC for any modulus with active security. IACR Cryptology ePrint Archive 2019, 164 (2019)
Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique is almost NP-complete. In: FOCS (1991)
Fortnow, L., Rompel, J., Sipser, M.: On the power of multi-prover interactive protocols. Theor. Comput. Sci. 134(2), 545–557 (1994)
Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: STOC (2008)
Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-party computation for malicious adversaries and an honest majority. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_8
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC (1987)
Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: STOC (2008)
Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. J. ACM 62(4), 27 (2015)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)
Gordon, S.D., Ranellucci, S., Wang, X.: Secure computation with low communication from cross-checking. IACR Cryptology ePrint Archive 2018, 216 (2018)
Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Gur, T., Rothblum, R.D.: A hierarchy theorem for interactive proofs of proximity. In: 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, Berkeley, CA, USA, 9–11 January 2017 (2017)
Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: Conference on Computational Complexity (2007)
Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 536–547. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_44
Kalai, Y.T., Rothblum, R.D.: Arguments of proximity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 422–442. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_21
Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11
Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. Technical report, Cryptology ePrint Archive, Report 2018/475 (2018)
Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: STOC (1992)
Klauck, H.: Rectangle size bounds and threshold covers in communication complexity. In: Conference on Computational Complexity (2003)
Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC 2018, Egham, United Kingdom, 23–27 July 2018 (2018)
Kushilevitz, E.: Communication complexity. Adv. Comput. 44, 331–360 (1997)
Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: ACM SIGSAC Conference on Computer and Communications Security, CCS (2017)
Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10
Micali, S.: CS proofs. In: FOCS (1994)
Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: the garbled circuit approach. In: ACM SIGSAC Conference on Computer and Communications Security, CCS (2015)
Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive proofs. http://arxiv.org/abs/1812.10917 (2018)
Nordholt, P.S., Veeningen, M.: Minimising communication in honest-majority MPC by batchwise multiplication verification. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 321–339. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_17
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: Symposium on Security and Privacy (2013)
Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. Commun. ACM 59(2), 103–112 (2016)
Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs for delegating computation. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing (2016)
Rothblum, G.N., Vadhan, S.P.: Are PCPs inherent in efficient arguments? Comput. Complex. 19(2), 265–304 (2010)
Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: Symposium on Security and Privacy (2014)
Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the conflict between generality and plausibility in verified computation. In: EuroSys (2013)
Setty, S.T., McPherson, R., Blumberg, A.J., Walfish, M.: Making argument systems for outsourced computation practical (sometimes). In: NDSS (2012)
Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)
Sudan, M.: Probabilistically checkable proofs. Commun. ACM 52(3), 76–84 (2009)
Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup (2018)
Williams, R.: Strong ETH breaks with Merlin and Arthur: short non-interactive proofs of batch evaluation. arXiv preprint arXiv:1601.04743 (2016)
Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: verifying arbitrary SQL queries over dynamic outsourced databases. In: Symposium on Security and Privacy (2017)
Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-knowledge version of vSQL. Cryptology ePrint Archive, Report 2017/1146 (2017)
Acknowledgments
We thank Shai Halevi, Ariel Nof, Ron Rothblum, David J. Wu, and Eylon Yogev for helpful discussions and comments. Justin Thaler gave us many useful references to related work on sum-check-based proof protocols and helped us understand the relationship between those protocols and our own.
E. Boyle, N. Gilboa, and Y. Ishai supported by ERC grant 742754 (project NTSC). E. Boyle additionally supported by ISF grant 1861/16 and AFOSR Award FA9550-17-1-0069. N. Gilboa additionally supported by ISF grant 1638/15, and a grant by the BGU Cyber Center. Y. Ishai additionally supported by ISF grant 1709/14, NSF-BSF grant 2015782, and a grant from the Ministry of Science and Technology, Israel and Department of Science and Technology, Government of India. D. Boneh and H. Corrigan-Gibbs are supported by NSF, ONR, DARPA, the Simons Foundation, CISPA, and a Google faculty fellowship.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y. (2019). Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11694. Springer, Cham. https://doi.org/10.1007/978-3-030-26954-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-26954-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26953-1
Online ISBN: 978-3-030-26954-8
eBook Packages: Computer ScienceComputer Science (R0)