Nothing Special   »   [go: up one dir, main page]

Skip to main content

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2019 (CRYPTO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11694))

Included in the following conference series:

Abstract

We introduce and study the notion of fully linear probabilistically checkable proof systems. In such a proof system, the verifier can make a small number of linear queries that apply jointly to the input and a proof vector.

Our new type of proof system is motivated by applications in which the input statement is not fully available to any single verifier, but can still be efficiently accessed via linear queries. This situation arises in scenarios where the input is partitioned or secret-shared between two or more parties, or alternatively is encoded using an additively homomorphic encryption or commitment scheme. This setting appears in the context of secure messaging platforms, verifiable outsourced computation, PIR writing, private computation of aggregate statistics, and secure multiparty computation (MPC). In all these applications, there is a need for fully linear proof systems with short proofs.

While several efficient constructions of fully linear proof systems are implicit in the interactive proofs literature, many questions about their complexity are open. We present several new constructions of fully linear zero-knowledge proof systems with sublinear proof size for “simple” or “structured” languages. For example, in the non-interactive setting of fully linear PCPs, we show how to prove that an input vector \(x\in {\mathbb {F}}^n\), for a finite field \({\mathbb {F}}\), satisfies a single degree-2 equation with a proof of size \(O(\sqrt{n})\) and \(O(\sqrt{n})\) linear queries, which we show to be optimal. More generally, for languages that can be recognized by systems of constant-degree equations, we can reduce the proof size to \(O(\log n)\) at the cost of \(O(\log n)\) rounds of interaction.

We use our new proof systems to construct new short zero-knowledge proofs on distributed and secret-shared data. These proofs can be used to improve the performance of the example systems mentioned above.

Finally, we observe that zero-knowledge proofs on distributed data provide a general-purpose tool for protecting MPC protocols against malicious parties. Applying our short fully linear PCPs to “natural” MPC protocols in the honest-majority setting, we can achieve unconditional protection against malicious parties with sublinear additive communication cost. We use this to improve the communication complexity of recent honest-majority MPC protocols. For instance, using any pseudorandom generator, we obtain a 3-party protocol for Boolean circuits in which the amortized communication cost is only one bit per AND gate per party (compared to 10 bits in the best previous protocol), matching the best known protocols for semi-honest parties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is akin to proofs of proximity [21], which place a more stringent restriction on the verifier’s access to the input. However, unlike proofs of proximity, in fully linear PCPs the verifier is guaranteed that the input is actually in the language rather than being “close” to some input the language. Another related notion is that of a holographic proof [9, 57], where the verifier gets oracle access to an encoding of the input using an arbitrary error-correcting code.

  2. 2.

    Our compiler can analogously apply to the 3-party semi-honest protocol of Araki et al. [5]. We build on the protocol from [62] since its dealer-party structure offers a slightly simpler description within our framework and the advantage of lower online (input-dependent) cost.

  3. 3.

    For instantiating the publicly verifiable variant with bilinear groups, the linear PCP needs to have a verification predicate of algebraic degree 2. Such linear PCPs can be obtained either directly or via quadratic span programs or quadratic arithmetic programs [23, 49, 74].

References

  1. Aaronson, S., Wigderson, A.: Algebrization: a new barrier in complexity theory. ACM Trans. Comput. Theory (TOCT) 1(1), 2 (2009)

    MATH  Google Scholar 

  2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: CCS (2017)

    Google Scholar 

  3. Andrew, C.C.Y.: Some complexity questions related to distributed computing. In: STOC (1979)

    Google Scholar 

  4. Araki, T., et al.: Optimized honest-majority MPC for malicious adversaries - breaking the 1 billion-gate per second barrier. In: IEEE Symposium on Security and Privacy (2017)

    Google Scholar 

  5. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: ACM CCS (2016)

    Google Scholar 

  6. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

    Article  MathSciNet  Google Scholar 

  7. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM 45(1), 70–122 (1998)

    Article  MathSciNet  Google Scholar 

  8. Babai, L.: Trading group theory for randomness. In: STOC (1985)

    Google Scholar 

  9. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: STOC (1991)

    Google Scholar 

  10. Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)

    Article  MathSciNet  Google Scholar 

  11. Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical and privacy-preserving proofs on authenticated data. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015 (2015)

    Google Scholar 

  12. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: CCS (1993)

    Google Scholar 

  13. Ben-Or, M., et al.: Everything provable is provable in zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_4

    Chapter  Google Scholar 

  14. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive proofs: how to remove intractability assumptions. In: STOC (1988)

    Google Scholar 

  15. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046 (2018)

    Google Scholar 

  16. Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner, N.: On probabilistic checking in perfect zero knowledge. In: Electronic Colloquium on Computational Complexity (ECCC), no. 156 (2016)

    Google Scholar 

  17. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive oracle proofs with constant rate and query complexity. In: ICALP (2017)

    Google Scholar 

  18. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_6

    Chapter  MATH  Google Scholar 

  19. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. Cryptology ePrint Archive, Report 2018/828 (2018). https://eprint.iacr.org/2018/828

  20. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_2

    Chapter  Google Scholar 

  21. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36(4), 889–974 (2006)

    Article  MathSciNet  Google Scholar 

  22. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012 (2012)

    Google Scholar 

  23. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_18

    Chapter  Google Scholar 

  24. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988 (1988)

    Google Scholar 

  25. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their application to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_9

    Chapter  Google Scholar 

  26. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear multi-prover interactive proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 222–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_8

    Chapter  Google Scholar 

  27. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

    Chapter  MATH  Google Scholar 

  28. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_12

    Chapter  Google Scholar 

  29. Bootle, J., Groth, J.: Efficient batch zero-knowledge arguments for low degree polynomials. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 561–588. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_19

    Chapter  Google Scholar 

  30. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: CCS (2016)

    Google Scholar 

  31. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: efficient range proofs for confidential transactions. Cryptology ePrint Archive, Report 2017/1066 (2017)

    Google Scholar 

  32. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5

    Chapter  Google Scholar 

  33. Chakrabarti, A., Cormode, G., McGregor, A., Thaler, J.: Annotations in data streams. ACM Trans. Algorithms 11(1), 7 (2014)

    Article  MathSciNet  Google Scholar 

  34. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_2

    Chapter  Google Scholar 

  35. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming interactive proofs. In: ITCS (2012)

    Google Scholar 

  36. Cormode, G., Thaler, J., Yi, K.: Verifying computations with streaming interactive proofs. Proc. VLDB Endow. 5(1), 25–36 (2011)

    Article  Google Scholar 

  37. Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of aggregate statistics. In: NSDI (2017)

    Google Scholar 

  38. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous messaging system handling millions of users. In: Symposium on Security and Privacy (2015)

    Google Scholar 

  39. Costello, C., et al.: Geppetto: versatile verifiable computation. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015 (2015)

    Google Scholar 

  40. Couteau, G.: A note on the communication complexity of multiparty computation in the correlated randomness model. IACR Cryptology ePrint Archive 2018, 465 (2018)

    Google Scholar 

  41. Damgård, I., Luo, J., Oechsner, S., Scholl, P., Simkin, M.: Compact zero-knowledge proofs of small hamming weight. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 530–560. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_18

    Chapter  Google Scholar 

  42. Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_32

    Chapter  Google Scholar 

  43. Damgård, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The tinytable protocol for 2-party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 167–187. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_6

    Chapter  Google Scholar 

  44. Eerikson, H., Orlandi, C., Pullonen, P., Puura, J., Simkin, M.: Use your brain! Arithmetic 3PC for any modulus with active security. IACR Cryptology ePrint Archive 2019, 164 (2019)

    Google Scholar 

  45. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique is almost NP-complete. In: FOCS (1991)

    Google Scholar 

  46. Fortnow, L., Rompel, J., Sipser, M.: On the power of multi-prover interactive protocols. Theor. Comput. Sci. 134(2), 545–557 (1994)

    Article  MathSciNet  Google Scholar 

  47. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: STOC (2008)

    Google Scholar 

  48. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-party computation for malicious adversaries and an honest majority. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_8

    Chapter  Google Scholar 

  49. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37

    Chapter  Google Scholar 

  50. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC (1987)

    Google Scholar 

  51. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: STOC (2008)

    Google Scholar 

  52. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. J. ACM 62(4), 27 (2015)

    Article  MathSciNet  Google Scholar 

  53. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  Google Scholar 

  54. Gordon, S.D., Ranellucci, S., Wang, X.: Secure computation with low communication from cross-checking. IACR Cryptology ePrint Archive 2018, 216 (2018)

    Google Scholar 

  55. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19

    Chapter  Google Scholar 

  56. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

    Chapter  Google Scholar 

  57. Gur, T., Rothblum, R.D.: A hierarchy theorem for interactive proofs of proximity. In: 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, Berkeley, CA, USA, 9–11 January 2017 (2017)

    Google Scholar 

  58. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: Conference on Computational Complexity (2007)

    Google Scholar 

  59. Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 536–547. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_44

    Chapter  Google Scholar 

  60. Kalai, Y.T., Rothblum, R.D.: Arguments of proximity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 422–442. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_21

    Chapter  Google Scholar 

  61. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11

    Chapter  Google Scholar 

  62. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. Technical report, Cryptology ePrint Archive, Report 2018/475 (2018)

    Google Scholar 

  63. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: STOC (1992)

    Google Scholar 

  64. Klauck, H.: Rectangle size bounds and threshold covers in communication complexity. In: Conference on Computational Complexity (2003)

    Google Scholar 

  65. Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC 2018, Egham, United Kingdom, 23–27 July 2018 (2018)

    Google Scholar 

  66. Kushilevitz, E.: Communication complexity. Adv. Comput. 44, 331–360 (1997)

    Article  Google Scholar 

  67. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: ACM SIGSAC Conference on Computer and Communications Security, CCS (2017)

    Google Scholar 

  68. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10

    Chapter  Google Scholar 

  69. Micali, S.: CS proofs. In: FOCS (1994)

    Google Scholar 

  70. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: the garbled circuit approach. In: ACM SIGSAC Conference on Computer and Communications Security, CCS (2015)

    Google Scholar 

  71. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive proofs. http://arxiv.org/abs/1812.10917 (2018)

  72. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-majority MPC by batchwise multiplication verification. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 321–339. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_17

    Chapter  Google Scholar 

  73. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  74. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: Symposium on Security and Privacy (2013)

    Google Scholar 

  75. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. Commun. ACM 59(2), 103–112 (2016)

    Article  Google Scholar 

  76. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs for delegating computation. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing (2016)

    Google Scholar 

  77. Rothblum, G.N., Vadhan, S.P.: Are PCPs inherent in efficient arguments? Comput. Complex. 19(2), 265–304 (2010)

    Article  MathSciNet  Google Scholar 

  78. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: Symposium on Security and Privacy (2014)

    Google Scholar 

  79. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the conflict between generality and plausibility in verified computation. In: EuroSys (2013)

    Google Scholar 

  80. Setty, S.T., McPherson, R., Blumberg, A.J., Walfish, M.: Making argument systems for outsourced computation practical (sometimes). In: NDSS (2012)

    Google Scholar 

  81. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)

    Article  MathSciNet  Google Scholar 

  82. Sudan, M.: Probabilistically checkable proofs. Commun. ACM 52(3), 76–84 (2009)

    Article  Google Scholar 

  83. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup (2018)

    Google Scholar 

  84. Williams, R.: Strong ETH breaks with Merlin and Arthur: short non-interactive proofs of batch evaluation. arXiv preprint arXiv:1601.04743 (2016)

  85. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: verifying arbitrary SQL queries over dynamic outsourced databases. In: Symposium on Security and Privacy (2017)

    Google Scholar 

  86. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-knowledge version of vSQL. Cryptology ePrint Archive, Report 2017/1146 (2017)

    Google Scholar 

Download references

Acknowledgments

We thank Shai Halevi, Ariel Nof, Ron Rothblum, David J. Wu, and Eylon Yogev for helpful discussions and comments. Justin Thaler gave us many useful references to related work on sum-check-based proof protocols and helped us understand the relationship between those protocols and our own.

E. Boyle, N. Gilboa, and Y. Ishai supported by ERC grant 742754 (project NTSC). E. Boyle additionally supported by ISF grant 1861/16 and AFOSR Award FA9550-17-1-0069. N. Gilboa additionally supported by ISF grant 1638/15, and a grant by the BGU Cyber Center. Y. Ishai additionally supported by ISF grant 1709/14, NSF-BSF grant 2015782, and a grant from the Ministry of Science and Technology, Israel and Department of Science and Technology, Government of India. D. Boneh and H. Corrigan-Gibbs are supported by NSF, ONR, DARPA, the Simons Foundation, CISPA, and a Google faculty fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Boneh or Elette Boyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y. (2019). Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11694. Springer, Cham. https://doi.org/10.1007/978-3-030-26954-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26954-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26953-1

  • Online ISBN: 978-3-030-26954-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics