Nothing Special   »   [go: up one dir, main page]

Skip to main content

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2019 (CRYPTO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11694))

Included in the following conference series:

Abstract

A software watermarking scheme enables one to embed a “mark” (i.e., a message) within a program while preserving the program’s functionality. Moreover, there is an extraction algorithm that recovers an embedded message from a program. The main security goal is that it should be difficult to remove the watermark without destroying the functionality of the program. Existing constructions of watermarking focus on watermarking cryptographic functions like pseudorandom functions (PRFs); even in this setting, realizing watermarking from standard assumptions remains difficult. The first lattice-based construction of secret-key watermarking due to Kim and Wu (CRYPTO 2017) only ensures mark-unremovability against an adversary who does not have access to the mark-extraction oracle. The construction of Quach et al. (TCC 2018) achieves the stronger notion of mark-unremovability even if the adversary can make extraction queries, but has the drawback that the watermarking authority (who holds the watermarking secret key) can break pseudorandomness of all PRF keys in the family (including unmarked keys).

In this work, we construct new lattice-based secret-key watermarking schemes for PRFs that both provide unremovability against adversaries that have access to the mark-extraction oracle and offer a strong and meaningful notion of pseudorandomness even against the watermarking authority (i.e., the outputs of unmarked keys are pseudorandom almost everywhere). Moreover, security of several of our schemes can be based on the hardness of computing nearly polynomial approximations to worst-case lattice problems. This is a qualitatively weaker assumption than that needed for existing lattice-based constructions of watermarking (that support message-embedding), all of which require quasi-polynomial approximation factors. Our constructions rely on a new cryptographic primitive called an extractable PRF, which may be of independent interest.

The full version of this paper is available at https://eprint.iacr.org/2018/986.pdf.

D.J. Wu—Part of this work was done while a student at Stanford University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Key-injectivity also played a role in previous watermarking constructions, though in a different context [27, 38].

  2. 2.

    This definition is the complement of the definition from previous works on watermarking [16, 27, 38, 45, 49, 50], but we adopt this to maintain consistency with our definition for robust extractability.

  3. 3.

    In the weak pseudorandomness game, the adversary is given outputs of the PRF on random inputs, while in the non-adaptive pseudorandomness game, the adversary must declare all of its evaluation queries before seeing any evaluations of the PRF or the public parameters.

  4. 4.

    A private puncturable PRF [16] is a puncturable PRF where the punctured key also hides the punctured point. There are several lattice-based constructions of private puncturable PRFs (and more generally, private constrained PRFs) [14, 21, 25, 26, 44].

  5. 5.

    While the general construction described in [23] relies on worst-case lattice problems with sub-exponential approximation factors, when restricted to just puncturing constraints (which can be computable by log-depth circuits), it can be based on worst-case lattice problems with a nearly polynomial approximation factor by leveraging the techniques for branching program evaluation [22].

  6. 6.

    For notational simplicity, we drop the transpose notation when it is clear from context.

  7. 7.

    In designated-verifier argument systems, an adversary who has oracle access to the verifier can observe the verifier’s behavior on different statements and proof strings. When the verifier’s responses are correlated with its secret verification state, the prover can potentially leverage the leakage and compromise soundness. This is the so-called “verifier rejection” problem. Strong soundness is a property that says that the responses of the verifier depend only on the statement or proof string, and not on the secret verification state (the analog in our setting is that the behavior of the extraction oracle only depends on the input circuit and not the extraction trapdoor). This property is very useful for arguing soundness in the presence of a verification oracle for designated-verifier argument systems.

  8. 8.

    We refer to the full version of this paper [39] for the specification of the \(\mathsf {Eval}_{\mathsf {pk}}\), \(\mathsf {Eval}_{\mathsf {ct}}\), \(\mathsf {EvalP}_{\mathsf {pk}}\), and \(\mathsf {EvalP}_{\mathsf {ct}}\) algorithms for computing on matrix embeddings [12, 38].

  9. 9.

    We refer to full version of this paper [39] for the formal statements of these assumptions.

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  MATH  Google Scholar 

  2. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_2

    Chapter  Google Scholar 

  3. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_1

    Chapter  Google Scholar 

  4. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS (2009)

    Google Scholar 

  5. Baldimtsi, F., Kiayias, A., Samari, K.: Watermarking public-key cryptographic functionalities and implementations. In: Nguyen, P., Zhou, J. (eds.) ISC 2017. Lecture Notes in Computer Science, vol. 10599. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69659-1_10

    Chapter  Google Scholar 

  6. Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_2

    Chapter  Google Scholar 

  7. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_20

    Chapter  Google Scholar 

  8. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42

    Chapter  Google Scholar 

  9. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  10. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

    Article  MathSciNet  Google Scholar 

  11. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_18

    Chapter  Google Scholar 

  12. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30

    Chapter  Google Scholar 

  13. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their application to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_9

    Chapter  Google Scholar 

  14. Boneh, D., Kim, S., Montgomery, H.W.: Private puncturable PRFs from standard lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_15

    Chapter  Google Scholar 

  15. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_23

    Chapter  Google Scholar 

  16. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_17

    Chapter  Google Scholar 

  17. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_29

    Chapter  Google Scholar 

  18. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_15

    Chapter  Google Scholar 

  19. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29

    Chapter  Google Scholar 

  20. Brakerski, Z., Cash, D., Tsabary, R., Wee, H.: Targeted homomorphic attribute-based encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 330–360. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_13

    Chapter  Google Scholar 

  21. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs (and More) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_10

    Chapter  Google Scholar 

  22. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS, pp. 1–12 (2014)

    Google Scholar 

  23. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_1

    Chapter  Google Scholar 

  24. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_13

    Chapter  Google Scholar 

  25. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC\({}^{\text{1}}\) from LWE. In: EUROCRYPT (2017)

    Google Scholar 

  26. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_20

    Chapter  Google Scholar 

  27. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. In: STOC (2016)

    Google Scholar 

  28. Gay, R., Méaux, P., Wee, H.: Predicate encryption for multi-dimensional range queries from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 752–776. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_34

    Chapter  Google Scholar 

  29. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC (2008)

    Google Scholar 

  30. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: FOCS (1984)

    Google Scholar 

  31. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC (2013)

    Google Scholar 

  32. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_25

    Chapter  Google Scholar 

  33. Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 550–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_23

    Chapter  Google Scholar 

  34. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: FOCS (2017)

    Google Scholar 

  35. Hopper, N., Molnar, D., Wagner, D.A.: From weak to strong watermarking. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 362–382. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_20

    Chapter  Google Scholar 

  36. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: EUROCRYPT (2008)

    Google Scholar 

  37. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: ACM CCS (2013)

    Google Scholar 

  38. Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from standard lattice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 503–536. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_17

    Chapter  Google Scholar 

  39. Kim, S., Wu, D.J.: Watermarking prfs from lattices: stronger security via extractable prfs. IACR Cryptology ePrint Archive 2018: 986 (2018)

    Google Scholar 

  40. Lyubashevsky, V., Wichs, D.: Simple lattice trapdoor sampling from a broad class of distributions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 716–730. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_32

    Chapter  Google Scholar 

  41. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  42. Naccache, D., Shamir, A., Stern, J.P.: How to copyright a function? In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 188–196. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-7_14

    Chapter  Google Scholar 

  43. Nishimaki, R.: How to watermark cryptographic functions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 111–125. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_7

    Chapter  Google Scholar 

  44. Peikert, C., Shiehian, S.: Privately constraining and programming PRFs, the LWE way. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 675–701. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_23

    Chapter  Google Scholar 

  45. Quach, W., Wichs, D., Zirdelis, G.: Watermarking PRFs under standard assumptions: public marking and security with extraction queries. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 669–698. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_24

    Chapter  Google Scholar 

  46. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC (2005)

    Google Scholar 

  47. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  48. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE. In: FOCS (2017)

    Google Scholar 

  49. Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Collusion resistant watermarking schemes for cryptographic functionalities. IACR Cryptology ePrint Archive (2017)

    Google Scholar 

  50. Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Unforgeable watermarking schemes with public extraction. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 63–80. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_4

    Chapter  Google Scholar 

  51. Yoshida, M., Fujiwara, T.: Toward digital watermarking for cryptographic data. IEICE Trans. 94(A(1)), 270–272 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Willy Quach, Sina Shiehian, Daniel Wichs, and Giorgos Zirdelis for many insightful conversations. We thank the anonymous CRYPTO reviewers for helpful feedback on the presentation. This work was funded by NSF, DARPA, a grant from ONR, and the Simons Foundation. Opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, S., Wu, D.J. (2019). Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11694. Springer, Cham. https://doi.org/10.1007/978-3-030-26954-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26954-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26953-1

  • Online ISBN: 978-3-030-26954-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics