Abstract
A software watermarking scheme enables one to embed a “mark” (i.e., a message) within a program while preserving the program’s functionality. Moreover, there is an extraction algorithm that recovers an embedded message from a program. The main security goal is that it should be difficult to remove the watermark without destroying the functionality of the program. Existing constructions of watermarking focus on watermarking cryptographic functions like pseudorandom functions (PRFs); even in this setting, realizing watermarking from standard assumptions remains difficult. The first lattice-based construction of secret-key watermarking due to Kim and Wu (CRYPTO 2017) only ensures mark-unremovability against an adversary who does not have access to the mark-extraction oracle. The construction of Quach et al. (TCC 2018) achieves the stronger notion of mark-unremovability even if the adversary can make extraction queries, but has the drawback that the watermarking authority (who holds the watermarking secret key) can break pseudorandomness of all PRF keys in the family (including unmarked keys).
In this work, we construct new lattice-based secret-key watermarking schemes for PRFs that both provide unremovability against adversaries that have access to the mark-extraction oracle and offer a strong and meaningful notion of pseudorandomness even against the watermarking authority (i.e., the outputs of unmarked keys are pseudorandom almost everywhere). Moreover, security of several of our schemes can be based on the hardness of computing nearly polynomial approximations to worst-case lattice problems. This is a qualitatively weaker assumption than that needed for existing lattice-based constructions of watermarking (that support message-embedding), all of which require quasi-polynomial approximation factors. Our constructions rely on a new cryptographic primitive called an extractable PRF, which may be of independent interest.
The full version of this paper is available at https://eprint.iacr.org/2018/986.pdf.
D.J. Wu—Part of this work was done while a student at Stanford University.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
In the weak pseudorandomness game, the adversary is given outputs of the PRF on random inputs, while in the non-adaptive pseudorandomness game, the adversary must declare all of its evaluation queries before seeing any evaluations of the PRF or the public parameters.
- 4.
- 5.
While the general construction described in [23] relies on worst-case lattice problems with sub-exponential approximation factors, when restricted to just puncturing constraints (which can be computable by log-depth circuits), it can be based on worst-case lattice problems with a nearly polynomial approximation factor by leveraging the techniques for branching program evaluation [22].
- 6.
For notational simplicity, we drop the transpose notation when it is clear from context.
- 7.
In designated-verifier argument systems, an adversary who has oracle access to the verifier can observe the verifier’s behavior on different statements and proof strings. When the verifier’s responses are correlated with its secret verification state, the prover can potentially leverage the leakage and compromise soundness. This is the so-called “verifier rejection” problem. Strong soundness is a property that says that the responses of the verifier depend only on the statement or proof string, and not on the secret verification state (the analog in our setting is that the behavior of the extraction oracle only depends on the input circuit and not the extraction trapdoor). This property is very useful for arguing soundness in the presence of a verification oracle for designated-verifier argument systems.
- 8.
- 9.
We refer to full version of this paper [39] for the formal statements of these assumptions.
References
Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28
Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_2
Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_1
Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS (2009)
Baldimtsi, F., Kiayias, A., Samari, K.: Watermarking public-key cryptographic functionalities and implementations. In: Nguyen, P., Zhou, J. (eds.) ISC 2017. Lecture Notes in Computer Science, vol. 10599. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69659-1_10
Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_2
Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_20
Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42
Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1
Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)
Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_18
Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30
Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their application to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_9
Boneh, D., Kim, S., Montgomery, H.W.: Private puncturable PRFs from standard lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_15
Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_23
Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_17
Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_29
Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_15
Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29
Brakerski, Z., Cash, D., Tsabary, R., Wee, H.: Targeted homomorphic attribute-based encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 330–360. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_13
Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs (and More) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_10
Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS, pp. 1–12 (2014)
Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_1
Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_13
Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC\({}^{\text{1}}\) from LWE. In: EUROCRYPT (2017)
Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_20
Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. In: STOC (2016)
Gay, R., Méaux, P., Wee, H.: Predicate encryption for multi-dimensional range queries from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 752–776. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_34
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC (2008)
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: FOCS (1984)
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC (2013)
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_25
Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 550–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_23
Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: FOCS (2017)
Hopper, N., Molnar, D., Wagner, D.A.: From weak to strong watermarking. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 362–382. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_20
Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: EUROCRYPT (2008)
Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: ACM CCS (2013)
Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from standard lattice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 503–536. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_17
Kim, S., Wu, D.J.: Watermarking prfs from lattices: stronger security via extractable prfs. IACR Cryptology ePrint Archive 2018: 986 (2018)
Lyubashevsky, V., Wichs, D.: Simple lattice trapdoor sampling from a broad class of distributions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 716–730. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_32
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Naccache, D., Shamir, A., Stern, J.P.: How to copyright a function? In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 188–196. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-7_14
Nishimaki, R.: How to watermark cryptographic functions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 111–125. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_7
Peikert, C., Shiehian, S.: Privately constraining and programming PRFs, the LWE way. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 675–701. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_23
Quach, W., Wichs, D., Zirdelis, G.: Watermarking PRFs under standard assumptions: public marking and security with extraction queries. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 669–698. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_24
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC (2005)
Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27
Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE. In: FOCS (2017)
Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Collusion resistant watermarking schemes for cryptographic functionalities. IACR Cryptology ePrint Archive (2017)
Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Unforgeable watermarking schemes with public extraction. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 63–80. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_4
Yoshida, M., Fujiwara, T.: Toward digital watermarking for cryptographic data. IEICE Trans. 94(A(1)), 270–272 (2011)
Acknowledgments
We thank Willy Quach, Sina Shiehian, Daniel Wichs, and Giorgos Zirdelis for many insightful conversations. We thank the anonymous CRYPTO reviewers for helpful feedback on the presentation. This work was funded by NSF, DARPA, a grant from ONR, and the Simons Foundation. Opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Kim, S., Wu, D.J. (2019). Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11694. Springer, Cham. https://doi.org/10.1007/978-3-030-26954-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-26954-8_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26953-1
Online ISBN: 978-3-030-26954-8
eBook Packages: Computer ScienceComputer Science (R0)