Abstract
Image semantic segmentation systems based on deep learning are prone to making erroneous predictions for images affected by uncertainty influence factors such as occlusions or inclement weather. Bayesian deep learning applies the Bayesian framework to deep models and allows estimating so-called epistemic and aleatoric uncertainties as part of the prediction. Such estimates can indicate the likelihood of prediction errors due to the influence factors. However, because of lack of data, the effectiveness of Bayesian uncertainty estimation when segmenting images with varying levels of influence factors has not yet been systematically studied. In this paper, we propose using a synthetic dataset to address this gap. We conduct two sets of experiments to investigate the influence of distance, occlusion, clouds, rain, and puddles on the estimated uncertainty in the segmentation of road scenes. The experiments confirm the expected correlation between the influence factors, the estimated uncertainty, and accuracy. Contrary to expectation, we also find that the estimated aleatoric uncertainty from Bayesian deep models can be reduced with more training data. We hope that these findings will help improve methods for assuring machine-learning-based systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)
Czarnecki, K., Salay, R.: Towards a framework to manage perceptual uncertainty for safe automated driving. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11094, pp. 439–445. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99229-7_37
Depeweg, S., Hernandez-Lobato, J., Doshi-Velez, F., Udluft, S.: Decomposition of uncertainty in bayesian deep learning for efficient and risk-sensitive learning. In: 35th International Conference on Machine Learning, ICML 2018, vol. 3, pp. 1920–1934 (2018)
DeVries, T., Taylor, G.W.: Learning confidence for out-of-distribution detection in neural networks. arXiv preprint arXiv:1802.04865 (2018)
Gal, Y.: Uncertainty in deep learning (2016)
Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)
Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1321–1330. JMLR. org (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680 (2015)
Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5574–5584 (2017)
Khan, S., Phan, B., Salay, R., Czarnecki, K.: Procsy: Procedural synthetic dataset generation towards influence factor studies of semantic segmentation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (to appear, 2019)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Miller, D., Nicholson, L., Dayoub, F., Sünderhauf, N.: Dropout sampling for robust object detection in open-set conditions. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7. IEEE (2018)
Mukhoti, J., Gal, Y.: Evaluating Bayesian deep learning methods for semantic segmentation. arXiv preprint arXiv:1811.12709 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Tung, F., Chen, J., Meng, L., Little, J.J.: The raincouver scene parsing benchmark for self-driving in adverse weather and at night. IEEE Rob. Autom. Lett. 2(4), 2188–2193 (2017)
Yu, F., et al.: BDD100K: a diverse driving video database with scalable annotation tooling. CoRR arXiv:1805.04687 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Phan, B., Khan, S., Salay, R., Czarnecki, K. (2019). Bayesian Uncertainty Quantification with Synthetic Data. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2019. Lecture Notes in Computer Science(), vol 11699. Springer, Cham. https://doi.org/10.1007/978-3-030-26250-1_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-26250-1_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26249-5
Online ISBN: 978-3-030-26250-1
eBook Packages: Computer ScienceComputer Science (R0)