Nothing Special   »   [go: up one dir, main page]

Skip to main content

Confidence Arguments for Evidence of Performance in Machine Learning for Highly Automated Driving Functions

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11699))

Included in the following conference series:

  • 3293 Accesses

Abstract

Due to their ability to efficiently process unstructured and highly dimensional input data, machine learning algorithms are being applied to perception tasks for highly automated driving functions. The consequences of failures and insufficiencies in such algorithms are severe and a convincing assurance case that the algorithms meet certain safety requirements is therefore required. However, the task of demonstrating the performance of such algorithms is non-trivial, and as yet, no consensus has formed regarding an appropriate set of verification measures. This paper provides a framework for reasoning about the contribution of performance evidence to the assurance case for machine learning in an automated driving context and applies the evaluation criteria to a pedestrian recognition case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ISO/PRF PAS 21448: Road vehicles - safety of the intended functionality. Technical report, International Standards Organisation (ISO), Geneva (2011)

    Google Scholar 

  2. Goal structuring notation community standard version 2. Technical report, Assurance Case Working Group (ACWG) (2018). https://scsc.uk/r141B:1?t=1. Accessed 04 June 2019

  3. ISO 26262: Road vehicles - functional safety, second edition. Technical report, International Standards Organisation (ISO), Geneva (2018)

    Google Scholar 

  4. SAE J3016: Surface vehicle recommended practice, (r) taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. Technical report. SAE International, Geneva (2018)

    Google Scholar 

  5. Alsallakh, B., Jourabloo, A., Ye, M., Liu, X., Ren, L.: Do convolutional neural networks learn class hierarchy? CoRR arXiv:1710.06501 (2017)

  6. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in ai safety. arXiv preprint arXiv:1606.06565 (2016)

  7. Baker, R., Habli, I.: An empirical evaluation of mutation testing for improving the test quality of safety-critical software. IEEE Trans. Software Eng. 39(6), 787–805 (2012)

    Article  Google Scholar 

  8. Burton, S., Gauerhof, L., Heinzemann, C.: Making the case for safety of machine learning in highly automated driving. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10489, pp. 5–16. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66284-8_1

    Chapter  Google Scholar 

  9. Chollet, F.: Deep Learning with Python. Manning Publications Co., Greenwich, CT, USA, 1st edn. (2017), chapter: 5.4.1. Visualizing intermediate activations

    Google Scholar 

  10. Gauerhof, L., Munk, P., Burton, S.: Structuring validation targets of a machine learning function applied to automated driving. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11093, pp. 45–58. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99130-6_4

    Chapter  Google Scholar 

  11. Hawkins, R., Habli, I., Kelly, T.: The principles of software safety assurance. In: 31st International System Safety Conference (2013)

    Google Scholar 

  12. Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A new approach to creating clear safety arguments. In: Dale, C., Anderson, T. (eds.) Advances in Systems Safety. Springer, London (2011). https://doi.org/10.1007/978-0-85729-133-2_1

    Chapter  Google Scholar 

  13. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

    Chapter  Google Scholar 

  14. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)0.5MB model size. arXiv e-prints arXiv:1602.07360, February 2016

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  16. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533 (2016)

  17. Kurd, Z., Kelly, T.: Establishing safety criteria for artificial neural networks. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS (LNAI), vol. 2773, pp. 163–169. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45224-9_24

    Chapter  Google Scholar 

  18. Lin, H.W., Tegmark, M., Rolnick, D.: Why does deep and cheap learning work so well? J. Stat. Phys. 168(6), 1223–1247 (2017)

    Article  MathSciNet  Google Scholar 

  19. Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial perturbations. arXiv preprint arXiv:1702.04267 (2017)

  20. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)

    Google Scholar 

  21. Nguyen, A.M., Yosinski, J., Clune, J.: Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks. CoRR arXiv:1602.03616 (2016)

  22. Picardi, C., Habli, I.: Perspectives on assurance case development for retinal disease diagnosis using deep learning. In: Riaño, D., Wilk, S., ten Teije, A. (eds.) Artificial Intelligence in Medicine AIME 2019. LNCS, p. 11526. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21642-9_46

    Chapter  Google Scholar 

  23. Picardi, C., Hawkins, R., Paterson, C., Habli, I.: A pattern for arguing the assurance of machine learning in medical diagnosis systems. In: International Conference on Computer Safety, Reliability, and Security. Springer (2019)

    Google Scholar 

  24. Schorn, C., Guntoro, A., Ascheid, G.: Efficient on-line error detection and mitigation for deep neural network accelerators. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11093, pp. 205–219. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99130-6_14

    Chapter  Google Scholar 

  25. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Advances in Neural Information Processing Systems, pp. 2503–2511 (2015)

    Google Scholar 

  26. Varshney, K.R.: Engineering safety in machine learning. In: 2016 Information Theory and Applications Workshop (ITA), pp. 1–5. IEEE (2016)

    Google Scholar 

  27. Zhang, S., Benenson, R., Schiele, B.: CityPersons: a diverse dataset for pedestrian detection. arXiv e-prints arXiv:1702.05693, February 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Gauerhof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burton, S., Gauerhof, L., Sethy, B.B., Habli, I., Hawkins, R. (2019). Confidence Arguments for Evidence of Performance in Machine Learning for Highly Automated Driving Functions. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2019. Lecture Notes in Computer Science(), vol 11699. Springer, Cham. https://doi.org/10.1007/978-3-030-26250-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26250-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26249-5

  • Online ISBN: 978-3-030-26250-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics