Nothing Special   »   [go: up one dir, main page]

Skip to main content

Context-Free Word Problem Semigroups

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2019)

Abstract

This paper studies the classes of semigoups and monoids with context-free and deterministic context-free word problem. First, some examples are exhibited to clarify the relationship between these classes and their connection with the notions of word-hyperbolicity and automaticity. Second, a study is made of whether these classes are closed under applying certain semigroup constructions, including direct products and free products, or under regressing from the results of such constructions to the original semigroup(s) or monoid(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Book, R.V., Otto, F.: String Rewriting Systems. Texts and Monographs in Computer Science. Springer, New York (1993). https://doi.org/10.1007/978-1-4613-9771-7

    Book  MATH  Google Scholar 

  2. Brough, T.: Groups with poly-context-free word problem. Groups Complex. Cryptol. 6(1), 9–29 (2014). https://doi.org/10.1515/gcc-2014-0002

    Article  MathSciNet  MATH  Google Scholar 

  3. Brough, T.: Word problem languages for free inverse monoids. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 24–36. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94631-3_3

    Chapter  Google Scholar 

  4. Brough, T., Cain, A.J.: A language hierarchy of binary relations (2018)

    Google Scholar 

  5. Brough, T.R.: Groups with poly-context-free word problem. Ph.D. thesis, University of Warwick (2010). https://wrap.warwick.ac.uk/35716/

  6. Cain, A.J., Maltcev, V.: Context-free rewriting systems and word-hyperbolic structures with uniqueness. Int. J. Algebra Comput. 22(7) (2012). https://doi.org/10.1142/S0218196712500610

    Article  MathSciNet  Google Scholar 

  7. Campbell, C.M., Robertson, E.F., Ruškuc, N., Thomas, R.M.: Automatic semigroups. Theor. Comput. Sci. 250(1–2), 365–391 (2001). https://doi.org/10.1016/S0304-3975(99)00151-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Duncan, A., Gilman, R.H.: Word hyperbolic semigroups. Math. Proc. Camb. Philos. Soc. 136(3), 513–524 (1999). https://doi.org/10.1017/S0305004103007497

    Article  MathSciNet  MATH  Google Scholar 

  9. Dunwoody, M.J.: The accessibility of finitely presented groups. Invent. Math. 81(3), 449–457 (1985). https://doi.org/10.1007/BF01388581

    Article  MathSciNet  MATH  Google Scholar 

  10. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word Processing in Groups. Jones & Bartlett, Boston (1992)

    Book  Google Scholar 

  11. Gilman, R.H.: On the definition of word hyperbolic groups. Math. Z. 242(3), 529–541 (2002). https://doi.org/10.1007/s002090100356

    Article  MathSciNet  MATH  Google Scholar 

  12. Ginsburg, S., Greibach, S.: Deterministic context free languages. Inf. Control 9(6), 620–648 (1966). https://doi.org/10.1016/S0019-9958(66)80019-0

    Article  MathSciNet  MATH  Google Scholar 

  13. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory. Mathematical Sciences Research Institute Publications, vol. 8, pp. 75–263. Springer, New York (1987). https://doi.org/10.1007/978-1-4613-9586-7_3

    Chapter  Google Scholar 

  14. Herbst, T., Thomas, R.M.: Group presentations, formal languages and characterizations of one-counter groups. Theor. Comput. Sci. 112(2), 187–213 (1993). https://doi.org/10.1016/0304-3975(93)90018-O

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoffmann, M., Holt, D.F., Owens, M.D., Thomas, R.M.: Semigroups with a context-free word problem. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 97–108. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31653-1_10

    Chapter  Google Scholar 

  16. Hoffmann, M., Kuske, D., Otto, F., Thomas, R.M.: Some relatives of automatic and hyperbolic groups. In: Gomes, G.M.S., Pin, J.É., Silva, P.V. (eds.) Semigroups, Algorithms, Automata and Languages, pp. 379–406. World Scientific, River Edge (2002). https://doi.org/10.1142/9789812776884_0016

  17. Holt, D.F., Owens, M.D., Thomas, R.M.: Groups and semigroups with a one-counter word problem. J. Aust. Math. Soc. 85(02), 197 (2008). https://doi.org/10.1017/S1446788708000864

    Article  MathSciNet  MATH  Google Scholar 

  18. Holt, D.F., Rees, S., Röver, C.E., Thomas, R.M.: Groups with context-free co-word problem. J. London Math. Soc. 71(3), 643–657 (1999). https://doi.org/10.1112/S002461070500654X

    Article  MathSciNet  MATH  Google Scholar 

  19. Holt, D.F., Röver, C.E.: Groups with indexed co-word problem. Int. J. Algebra Comput. 16(5), 985–1014 (2006). https://doi.org/10.1142/S0218196706003359

    Article  MathSciNet  MATH  Google Scholar 

  20. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 1st edn. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  21. Howie, J.M.: Fundamentals of Semigroup Theory. London Mathematical Society Monographs: New Series, vol. 12. Clarendon Press, Oxford University Press, New York (1995)

    Google Scholar 

  22. Muller, D.E., Schupp, P.E.: Groups, the theory of ends, and context-free languages. J. Comput. Syst. Sci. 26(3), 295–310 (1983). https://doi.org/10.1016/0022-0000(83)90003-X

    Article  MathSciNet  MATH  Google Scholar 

  23. Robertson, E.F., Ruškuc, N., Wiegold, J.: Generators and relations of direct products of semigroups. Trans. Am. Math. Soc. 350(07), 2665–2686 (1998). https://doi.org/10.1090/S0002-9947-98-02074-1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by the FCT (Fundação para a Ciência e a Tecnologia/Portuguese Foundation for Science and Technology) fellowship SFRH/BPD/121469/2016 and by the FCT project UID/Multi/04621/2013.

The second author was supported by the ‘Investigador FCT’ fellowship IF/01622/2013/CP1161/CT0001.

For the first and second authors, this work was partially supported by FCT projects UID/MAT/00297/2019 (Centro de Matemática e Aplicações), PTDC/MHC-FIL/2583/2014 and PTDC/MAT-PUR/31174/2017.

This work was started during a visit by the third author to the Universidade Nova de Lisboa, which was supported by the exploratory project IF/01622/2013/CP1161/CT0001 attached to the second author’s research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Cain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brough, T., Cain, A.J., Pfeiffer, M. (2019). Context-Free Word Problem Semigroups. In: Hofman, P., Skrzypczak, M. (eds) Developments in Language Theory. DLT 2019. Lecture Notes in Computer Science(), vol 11647. Springer, Cham. https://doi.org/10.1007/978-3-030-24886-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24886-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24885-7

  • Online ISBN: 978-3-030-24886-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics