Nothing Special   »   [go: up one dir, main page]

Skip to main content

Weighted Throughput Maximization with Calibrations

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11646))

Included in the following conference series:

Abstract

The scheduling problem with calibrations was introduced by Bender et al. (SPAA 2013). In sensitive applications, machines need to be periodically calibrated to ensure that they run correctly. Formally, we are given a set of n jobs with release times, deadlines and weights. Calibrating a machine requires a cost and remains calibrated for a period of T time units, after which it must be recalibrated before it can resume running jobs. Moreover, we are given a budget of K calibrations. The objective is to schedule a set of jobs such that the total weight is maximized on m identical machines with at most K calibrations.

In this paper, we present a \((1\mathrm{{/}}3)\)-approximation polynomial time algorithm when jobs have unit processing time. For the arbitrary processing time case, we give a \(((1-\varepsilon )/3)\)-approximation pseudo-polynomial time algorithm and a \(((1-\varepsilon )/18)\)-approximation polynomial time algorithm.

Vincent Chau, Shengzhong Feng and Yong Zhang are supported by Shenzhen research grant (KQJSCX20180330170311901, JCYJ20180305180840138 and GGFW2017073114031767), NSFC (No. 61433012) and Hong Kong GRF 17210017. Minming Li is supported by a grant from Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 11268616). Guochuan Zhang is supported by NSFC (No. 11531014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A \(\rho \)-approximation algorithm for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of \(\rho \) of the value of an optimal solution. By convention, we have \(\rho >1\) for minimization problems, while \(\rho <1\) for maximization problems.

References

  1. Angel, E., Bampis, E., Chau, V., Zissimopoulos, V.: On the complexity of minimizing the total calibration cost. In: Xiao, M., Rosamond, F. (eds.) FAW 2017. LNCS, vol. 10336, pp. 1–12. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59605-1_1

    Chapter  Google Scholar 

  2. Baptiste, P.: Scheduling unit tasks to minimize the number of idle periods: a polynomial time algorithm for offline dynamic power management. In: SODA, pp. 364–367. ACM Press (2006)

    Google Scholar 

  3. Baptiste, P., Chrobak, M., Dürr, C., Jawor, W., Vakhania, N.: Preemptive scheduling of equal-length jobs to maximize weighted throughput. Oper. Res. Lett. 32(3), 258–264 (2004)

    Article  MathSciNet  Google Scholar 

  4. Barringer, H.P.: Cost effective calibration intervals using Weibull analysis. In: Annual Quality Congress Proceedings-American Society For Quality Control, pp. 1026–1038 (1995)

    Google Scholar 

  5. Bender, M.A., Bunde, D.P., Leung, V.J., McCauley, S., Phillips, C.A.: Efficient scheduling to minimize calibrations. In: SPAA, pp. 280–287. ACM (2013)

    Google Scholar 

  6. Chau, V., Li, M., McCauley, S., Wang, K.: Minimizing total weighted flow time with calibrations. In: SPAA, pp. 67–76. ACM (2017)

    Google Scholar 

  7. Fineman, J.T., Sheridan, B.: Scheduling non-unit jobs to minimize calibrations. In: SPAA, pp. 161–170. ACM (2015)

    Google Scholar 

  8. Hochbaum, D.S.: Approximating covering and packing problems: set cover, vertex cover, independent set, and related problems. In: Approximation Algorithms for NP-Hard Problems, pp. 94–143. PWS Publishing Co., Boston (1997)

    Google Scholar 

  9. Lakin, J.R.: Establishing calibration intervals, how often should one calibrate? September 2014. http://www.inspec-inc.com/home/company/blog/inspec-insights/2014/09/30/establishing-calibration-intervals-how-often-should-one-calibrate. Accessed 30 Sept 2014

  10. Lawler, E.L.: A dynamic programming algorithm for preemptive scheduling of a single machine to minimize the number of late jobs. Ann. Oper. Res. 26(1), 125–133 (1990)

    Article  MathSciNet  Google Scholar 

  11. Lin, K.-H., Liu, B.-D.: A gray system modeling approach to the prediction of calibration intervals. IEEE Trans. Instrum. Measur. 54(1), 297–304 (2005)

    Article  Google Scholar 

  12. Mäcker, A., Malatyali, M., der Heide, F.M., Riechers, S.: Cost-efficient scheduling on machines from the cloud. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 578–592. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6_42

    Chapter  Google Scholar 

  13. Nunzi, E., Panfilo, G., Tavella, P., Carbone, P., Petri, D.: Stochastic and reactive methods for the determination of optimal calibration intervals. IEEE Trans. Instrum. Measur. 54(4), 1565–1569 (2005)

    Article  Google Scholar 

  14. Postlethwaite, S.R., Ford, D.G., Morton, D.: Dynamic calibration of CNC machine tools. Int. J. Mach. Tools Manuf. 37(3), 287–294 (1997)

    Article  Google Scholar 

  15. Wilken, T., et al.: High-precision calibration of spectrographs. Mon. Not. R. Astron. Soc. Lett. 405(1), L16–L20 (2010)

    Article  Google Scholar 

  16. Wyatt, D.W., Castrup, H.T.: Managing calibration intervals. In: Annual Workshop and Symposium on National Conference of Standards Laboratories (NCSL) (1991)

    Google Scholar 

  17. Zhang, G., Hocken, R.: Improving the accuracy of angle measurement in machine calibration. CIRP Ann.-Manufact. Technol. 35(1), 369–372 (1986)

    Article  Google Scholar 

  18. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinling Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chau, V., Feng, S., Li, M., Wang, Y., Zhang, G., Zhang, Y. (2019). Weighted Throughput Maximization with Calibrations. In: Friggstad, Z., Sack, JR., Salavatipour, M. (eds) Algorithms and Data Structures. WADS 2019. Lecture Notes in Computer Science(), vol 11646. Springer, Cham. https://doi.org/10.1007/978-3-030-24766-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24766-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24765-2

  • Online ISBN: 978-3-030-24766-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics