Abstract
Concept information can be expressed by text, images or general objects which semantic meaning is clear to a human in a specific cultural context. For a computer, when available, text with its semantics (e.g., metadata, comments, captions) can convey more precise meaning than images or general objects with low-level features (e.g., color distribution, shapes, sound peaks) to extract the concept underlying the object. Among semantic measures, web-based proximity measures e.g., confidence, PMING, NGD, Jaccard, Dice, are particularly useful for concept evaluation, exploiting statistical data provided by search engines on terms and expressions provided in texts associated with the object.
Where Artificial Intelligence can be a support for impaired individuals, e.g., having disabilities related to vision and hearing, understanding the concept underlying an object can be critical for an intelligent artificial assistant. In this work we propose to use the set semantic distance, already used in literature for semantic similarity measurement of web objects, as a tool for artificial assistants to support knowledge extraction; in other words, as prosthetic knowledge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Franzoni, V., Milani, A., Nardi, D., Vallverdú, J.: Emotional machines: the next revolution. Web Intell. 17, 1–7 (2019)
Franzoni, V., Milani, A., Vallverdú, J.: Emotional affordances in human-machine interactive planning and negotiation. In: Proceedings of 2017 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2017 (2017)
Milani, A., Rajdeep, N., Mangal, N., Mudgal, R.K., Franzoni, V.: Sentiment extraction and classification for the analysis of users’ interest in tweets. Int. J. Web Inf. Syst. 14, 29–40 (2018)
Mudgal, R.K., Niyogi, R., Milani, A., Franzoni, V.: Analysis of tweets to find the basis of popularity based on events semantic similarity. Int. J. Web Inf. Syst. 14, 438–452 (2018)
Franzoni, V., Mengoni, P., Milani, A.: Dimensional morphing interface for dynamic learning evaluation. In: Information Visualisation - Biomedical Visualization, Visualisation on Built and Rural Environments and Geometric Modelling and Imaging, IV 2018 (2018)
Gervasi, O., Franzoni, V., Riganelli, M., Tasso, S.: Automating facial emotion recognition. Web Intell. 17, 17–27 (2019)
Zhang, L., Ma, W.-Y., Li, X., Lin, F., Chen, L.: Image annotation by large-scale content-based image retrieval (2007)
Budanitsky, A., Hirst, G.: Evaluating WordNet-based measures of lexical semantic relatedness. Comput. Linguist. 32, 13–47 (2006)
Milani, A., Franzoni, V., Biondi, G., Li, Y.: Integrating binary similarity measures in the link prediction task (2019)
Franzoni, V., Chiancone, A., Milani, A.: A multistrain bacterial diffusion model for link prediction. Int. J. Pattern Recognit Artif Intell. 31, 1759024 (2017)
Budanitsky, A., Hirst, G.: Semantic distance in WordNet : an experimental, application-oriented evaluation of five measures. In: Workshop on WordNet and Other Lexical Resources, vol. 2 (2001)
Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet:: similarity: measuring the relatedness of concepts. In: Demonstration Papers at HLT-NAACL 2004 (2004)
Lin, J.: Divergence measures based on the shannon entropy. IEEE Trans. Inf. Theory 37, 145–151 (1991)
Strube, M., Ponzetto, S.P.: WikiRelate! Computing semantic relatedness using Wikipedia. Am. Assoc. Artif. Intell. 6, 1419–1424 (2006)
Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: IJCAI International Joint Conference on Artificial Intelligence (2007)
Milne, D.: Computing semantic relatedness using Wikipedia link structure. In: Work (2007)
Franzoni, V., Milani, A.: Heuristic semantic walk: browsing a collaborative network with a search engine-based heuristic (2013)
Franzoni, V., Milani, A.: A pheromone-like model for semantic context extraction from collaborative networks. In: Proceedings of 2015 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2015 (2016)
Franzoni, V., Mencacci, M., Mengoni, P., Milani, A.: Semantic heuristic search in collaborative networks: measures and contexts. In: Proceedings of 2014 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT 2014 (2014)
Franzoni, V., Milani, A.: Heuristic semantic walk for concept chaining in collaborative networks. Int. J. Web Inf. Syst. 10, 85–103 (2014)
Franzoni, V., Mencacci, M., Mengoni, P., Milani, A.: Heuristics for semantic path search in Wikipedia (2014)
Franzoni, V., Milani, A.: Semantic context extraction from collaborative networks. In: Proceedings of the 2015 IEEE 19th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2015 (2015)
Pallottelli, S., Franzoni, V., Milani, A.: Multi-path traces in semantic graphs for latent knowledge elicitation. In: Proceedings of the International Conference on Natural Computation (2016)
Wu, L., Hua, X.-S., Yu, N., Ma, W.-Y., Li, S.: Flickr distance: a relationship measure for visual concepts. IEEE Trans. Pattern Anal. Mach. Intell. 34, 863–875 (2012)
Liben-Nowell, D., Kleinberg, J.M.: The link-prediction problem for social networks. JASIST 58, 1019–1031 (2007)
Franzoni, V., Lepri, M., Li, Y., Milani, A.: Efficient graph-based author disambiguation by topological similarity in DBLP. In: Proceedings of 2018 1st IEEE International Conference on Artificial Intelligence and Knowledge Engineering, AIKE 2018 (2018)
Adamic, L.A., Lento, T.M., Adar, E., Ng, P.C.: Information evolution in social networks. In: WSDM, pp. 473–482. ACM (2016)
Hoffman, M., Steinley, D., Brusco, M.J.: A note on using the adjusted Rand index for link prediction in networks. Soc. Netw. 42, 72–79 (2015)
Han, S., Xu, Y.: Link prediction in microblog network using supervised learning with multiple features. JCP 11, 72–82 (2016)
Biondi, G., Franzoni, V., Li, Y., Milani, A.: SEMO: a semantic model for emotion recognition in web objects. In: ICCSA. Springer, Heidelberg (2017)
Franzoni, V., Biondi, G., Milani, A.: A web-based system for emotion vector extraction. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10406, pp. 653–668. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62398-6_46
Huang, A.H., Yen, D.C., Zhang, X.: Exploring the potential effects of emoticons. Inf. Manag. 45, 466–473 (2008)
Turney, P.D.: Mining the web for synonyms: {PMI-IR} versus {LSA} on {TOEFL}. CoRR. cs.LG/0212 (2002)
Franzoni, V., Milani, A.: PMING distance: a collaborative semantic proximity measure. In: Proceedings of 2012 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IAT 2012 (2012)
Biondi, G., Franzoni, V., Li, Y., Milani, A.: Web-based similarity for emotion recognition in web objects. In: Proceedings of 9th IEEE/ACM International Conference on Utility and Cloud Computing, UCC 2016 (2016)
Franzoni, V., Milani, A., Biondi, G.: SEMO: a semantic model for emotion recognition in web objects. In: Proceedings of 2017 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2017 (2017)
Franzoni, V., Milani, A.: Structural and semantic proximity in information networks. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10404, pp. 651–666. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62392-4_47
Chiancone, A., Franzoni, V., Li, Y., Markov, K., Milani, A.: Leveraging zero tail in neighbourhood for link prediction. In: Proceedings of 2015 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2015 (2016)
Chiancone, A., Milani, A., Poggioni, V., Pallottelli, S., Madotto, A., Franzoni, V.: A multistrain bacterial model for link prediction. In: Proceedings of International Conference on Natural Computation (2016)
Chiancone, A., Franzoni, V., Niyogi, R., Milani, A.: Improving link ranking quality by quasi-common neighbourhood. In: Proceedings of 15th International Conference on Computational Science and Its Applications, ICCSA 2015 (2015)
Franzoni, V., Milani, A.: A semantic comparison of clustering algorithms for the evaluation of web-based similarity measures. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9790, pp. 438–452. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42092-9_34
Franzoni, V., Li, Y., Mengoni, P.: A path-based model for emotion abstraction on facebook using sentiment analysis and taxonomy knowledge. In: Proceedings of 2017 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2017 (2017)
Leung, C.H.C., Li, Y., Milani, A., Franzoni, V.: Collective evolutionary concept distance based query expansion for effective web document retrieval. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7974, pp. 657–672. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39649-6_47
Brown, A., Randall, S., Ferrante, A., Boyd, J.: Partial Agreements in Probabilistic Linkages. Int. J. Popul. Data Sci. 3, 293 (2018)
Franzoni, V., Leung, C.H.C., Li, Y., Mengoni, P., Milani, A.: Set similarity measures for images based on collective knowledge. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9155, pp. 408–417. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21404-7_30
Zhang, J., Zhou, Q., Zhuo, L., Geng, W., Wang, S.: A CBIR system for hyperspectral remote sensing images using endmember extraction. IJWPRAI 31(4) (2016)
Franzoni, V., Milani, A., Pallottelli, S., Leung, C.H.C., Li, Y.: Context-based image semantic similarity. In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2015 (2016)
Chan, S.W., Franzoni, V., Mengoni, P., Milani, A.: Context-based image semantic similarity for prosthetic knowledge. In: Proceedings of 2018 1st IEEE International Conference on Artificial Intelligence and Knowledge Engineering, AIKE 2018 (2018)
Franzoni, V., Tasso, S., Pallottelli, S.: Sharing linkable learning objects between a content management system and a learning management system with the use of metadata and a taxonomy assistant for categorization. In: LNCS, ICCSA 2019 (2019)
Tasso, S., Pallottelli, S., Gervasi, O., Sabbatini, F., Franzoni, V.: Cloud and local servers into a federation of learning object repositories. In: ICCSA 2019, LNCS. Springer, Heidelberg (2019)
Acknowledgments
The authors thank the students involved in the experiments, and the authors of previous works of the image set similarity project, cited in this paper, in particular Alfredo Milani, Clement H.C. Leung, Sheung Wai Chan, Marco Mencacci, Paolo Mengoni, and Simonetta Pallottelli.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Franzoni, V., Li, Y., Milani, A. (2019). Set Semantic Similarity for Image Prosthetic Knowledge Exchange. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11624. Springer, Cham. https://doi.org/10.1007/978-3-030-24311-1_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-24311-1_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24310-4
Online ISBN: 978-3-030-24311-1
eBook Packages: Computer ScienceComputer Science (R0)