Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using Scope Scenarios to Verify Multiple Variability Models

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11623))

Included in the following conference series:

Abstract

Analyzing model variability represents a rapidly evolving discipline with increasing applications in different fields. Several efforts have addressed the analysis of a particular variability model represented, for instance, as feature models (FM). However, due to the proliferation of interrelated models, a major challenge today is detecting inter-model inconsistencies; that is, analyzing inconsistencies among inter-related variability models. In this paper, we introduce a proposal for verifying multiple variability models by using scope scenarios. Our approach is based on the SeVaTax method for building variability through functional datasheets, which are inputs to the process. Preliminary evaluation shows promissory results in terms of detected inconsistencies; however performance rises as a challenging issue for spreading the findings.

This work is partially supported by the UNComa project 04/F009 “Reuso de Software orientado a Dominios - Parte II” part of the program “Desarrollo de Software Basado en Reuso - Parte II”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This translation of the datasheets to the JSON file is still manual.

References

  1. Acher, M., Collet, P., Lahire, P., France, R.: Familiar: a domain-specific language for large scale management of feature models. Sci. Comput. Program. 78(6), 657–681 (2013). https://doi.org/10.1016/j.scico.2012.12.004

    Article  Google Scholar 

  2. Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wkasowski, A.: Clafer: unifying class and feature modeling. Softw. Syst. Model. 15(3), 811–845 (2016). https://doi.org/10.1007/s10270-014-0441-1

    Article  Google Scholar 

  3. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010). https://doi.org/10.1016/j.is.2010.01.001

    Article  Google Scholar 

  4. Brisaboa, N.R., Cortiñas, A., Luaces, M.R., Pol’la, M.: A reusable software architecture for geographic information systems based on software product line engineering. In: Bellatreche, L., Manolopoulos, Y. (eds.) MEDI 2015. LNCS, vol. 9344, pp. 320–331. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23781-7_26

    Chapter  Google Scholar 

  5. Buccella, A., Cechich, A., Arias, M., Pol’la, M., Doldan, S., Morsan, E.: Towards systematic software reuse of GIS: insights from a case study. Comput. Geosci. 54(0), 9–20 (2013). https://doi.org/10.1016/j.cageo.2012.11.014

    Article  Google Scholar 

  6. Buccella, A., Cechich, A., Pol’la, M., Arias, M., Doldan, S., Morsan, E.: Marine ecology service reuse through taxonomy-oriented SPL development. Comput. Geosci. 73, 108–121 (2014). https://doi.org/10.1016/j.cageo.2014.09.004

    Article  Google Scholar 

  7. Dhungana, D., GrÃnbacher, P., Rabiser, R.: The DOPLER meta-tool for decision-oriented variability modeling: a multiple case study. Autom. Softw. Eng. 18(1), 77–114 (2011). https://doi.org/10.1007/s10515-010-0076-6

    Article  Google Scholar 

  8. Hartmann, H., Trew, T.: Using feature diagrams with context variability to model multiple product lines for software supply chains. In: 2008 12th International Software Product Line Conference, pp. 12–21, September 2008. https://doi.org/10.1109/SPLC.2008.15

  9. Kowal, M., Ananieva, S., Thüm, T.: Explaining anomalies in feature models. SIGPLAN Not. 52(3), 132–143 (2016). https://doi.org/10.1145/3093335.2993248

    Article  Google Scholar 

  10. Lisboa, L.B., Garcia, V.C., Lucrédio, D., Almeida, E.S., Meira, S.R.D.L., Fortes, R.P.M.: A systematic review of domain analysis tools. Inf. Softw. Technol. 52(1), 1–13 (2010). https://doi.org/10.1016/j.infsof.2009.05.001

    Article  Google Scholar 

  11. Mazo, R., Muñoz-Fernández, J., Rincón, L., Salinesi, C., Tamura, G.: VariaMos: an extensible tool for engineering (dynamic) product lines. In: Proceedings of the 19th International Conference on Software Product Line, SPLC 2015, Nashville, TN, USA, 20–24 July 2015, pp. 374–379 (2015). https://doi.org/10.1145/2791060.2791103

  12. Mendonca, M., Branco, M., Cowan, D.: SPLOT: software product lines online tools. In: Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems Languages and Applications, OOPSLA 2009, pp. 761–762. ACM, New York (2009). https://doi.org/10.1145/1639950.1640002

  13. Metzger, A., Pohl, K., Heymans, P., Schobbens, P., Saval, G.: Disambiguating the documentation of variability in software product lines: a separation of concerns, formalization and automated analysis. In: 15th IEEE International Requirements Engineering Conference (RE 2007), pp. 243–253, October 2007. https://doi.org/10.1109/RE.2007.61

  14. Pohl, K., Böckle, G., van Der Linden, F.J.: Software Product Line Engineering: Foundations. Principles and Techniques. Springer, New York (2005)

    Book  Google Scholar 

  15. Pol’la, M., Buccella, A., Cechich, A.: Automated analysis of variability models: the SeVaTax process. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10963, pp. 365–381. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95171-3_29

    Chapter  Google Scholar 

  16. Rincón, L., Giraldo, G., Mazo, R., Salinesi, C.: An ontological rule-based approach for analyzing dead and false optional features in feature models. Electron. Notes Theor. Comput. Sci. 302, 111–132 (2014). https://doi.org/10.1016/j.entcs.2014.01.023

    Article  Google Scholar 

  17. Roos-Frantz, F., Galindo, J., Benavides, D., Cortés, A.R.: FaMa-OVM: a tool for the automated analysis of OVMs. In: Proceedings of the 16th International Software Product Line Conference, vol. 2, pp. 250–254. ACM (2012)

    Google Scholar 

  18. Rosenmüller, M., Siegmund, N., Thüm, T., Saake, G.: Multi-dimensional variability modeling. In: Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive Systems, VaMoS 2011, pp. 11–20. ACM, New York (2011). https://doi.org/10.1145/1944892.1944894

  19. Segura, S., Benavides, D., Cortés, A.R.: Functional testing of feature model analysis tools. A first step. In: 12th International Conference Software Product Lines, Proceedings, Second Volume (Workshops), SPLC 2008, Limerick, Ireland, 8–12 September 2008, p. 179 (2008)

    Google Scholar 

  20. Sree-Kumar, A., Planas, E., Clariso, R.: Analysis of feature models using alloy: a survey. In: Proceedings 7th International Workshop on Formal Methods and Analysis in Software Product Line Engineering, FMSPLE@ETAPS 2016, Eindhoven, The Netherlands, 3 April 2016, pp. 46–60 (2016). https://doi.org/10.4204/EPTCS.206.5

    Article  Google Scholar 

  21. Wohlin, C., Runeson, P., Hst, M., Ohlsson, M., Regnell, B., Wessln, A.: Experimentation in Software Engineering. Springer, Heidelberg (2012)

    Book  Google Scholar 

  22. Zaid, L., Kleinermann, F., Troyer, O.D.: Applying semantic web technology to feature modeling. In: Proceedings of the 2009 ACM Symposium on Applied Computing, SAC 2009, pp. 1252–1256. ACM, New York (2009). https://doi.org/10.1145/1529282.1529563

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustina Buccella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pol’la, M., Buccella, A., Cechich, A. (2019). Using Scope Scenarios to Verify Multiple Variability Models. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11623. Springer, Cham. https://doi.org/10.1007/978-3-030-24308-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24308-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24307-4

  • Online ISBN: 978-3-030-24308-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics