Nothing Special   »   [go: up one dir, main page]

Skip to main content

Industrial Fisheye Image Segmentation Using Neural Networks

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11622))

Included in the following conference series:

Abstract

Fisheye cameras have recently became very popular in computer vision applications due to their wide field of view. In addition to a better overview of the surrounding area, they enable to capture objects at extremely close ranges. These advantages come at a cost of strong image distortion, which cannot be removed completely maintaining image continuity. This complicates the use of traditional computer vision algorithms, which expect a single image as an input. This paper presents a performance evaluation of neural network algorithms for object detection and segmentation on fisheye camera images. Three approaches are evaluated: semantic image segmentation with Fully Convolutional Network (FCN) [13], a fully convolutional approach to instance segmentation with U-Net [18] and a region-based approach to instance segmentation with Mask R-CNN [10]. All of these networks successfully solved the task. However, as they were designed to different purposes, each of them has its own strengths and shortcomings. These three approaches are used to perform euro container image segmentation task. An image dataset was created in order to train and evaluate these algorithms. Huge part of this dataset was generated artificially, which simplified the task of ground truth labeling. The power of neural networks enable for fast and reliable image segmentation. As to our knowledge, this is the first neural networks application for euro container fisheye image detection and segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. CoRR abs/1511.00561 (2015). http://arxiv.org/abs/1511.00561

  2. Chen, L., Hermans, A., Papandreou, G., Schroff, F., Wang, P., Adam, H.: Masklab: instance segmentation by refining object detection with semantic and direction features. CoRR abs/1712.04837 (2017). http://arxiv.org/abs/1712.04837

  3. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS. CoRR abs/1606.00915 (2016). http://arxiv.org/abs/1606.00915

  4. Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. CoRR abs/1706.05587 (2017). http://arxiv.org/abs/1706.05587

  5. Coors, B., Condurache, A.P., Geiger, A.: Spherenet: learning spherical representations for detection and classification in omnidirectional images. In: European Conference on Computer Vision (ECCV), September 2018. http://www.cvlibs.net/publications/Coors2018ECCV.pdf

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)

    Google Scholar 

  7. Deng, L., Yang, M., Li, H., Li, T., Hu, B., Wang, C.: Restricted deformable convolution based road scene semantic segmentation using surround view cameras. CoRR abs/1801.00708 (2018). http://arxiv.org/abs/1801.00708

  8. Deng, L., Yang, M., Qian, Y., Wang, C., Wang, B.: CNN-based semantic segmentation for urban traffic scenes using fisheye camera, pp. 231–236, June 2017. https://doi.org/10.1109/IVS.2017.7995725, https://www.researchgate.net/publication/318805934_CNN_based_semantic_segmentation_for_urban_traffic_scenes_using_fisheye_camera

  9. Hayder, Z., He, X., Salzmann, M.: Shape-aware instance segmentation. CoRR abs/1612.03129 (2016). http://arxiv.org/abs/1612.03129

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. CoRR abs/1703.06870 (2017). http://arxiv.org/abs/1703.06870

  11. Iglovikov, V.I., Seferbekov, S.S., Buslaev, A.V., Shvets, A.: Ternausnetv2: fully convolutional network for instance segmentation. CoRR abs/1806.00844 (2018). http://arxiv.org/abs/1806.00844

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates Inc., New York (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

    Google Scholar 

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. CoRR abs/1411.4038 (2014). http://arxiv.org/abs/1411.4038

  14. Mohamed, I.S., Capitanelli, A., Mastrogiovanni, F., Rovetta, S., Zaccaria, R.: Detection, localisation and tracking of pallets using machine learning techniques and 2D range data. CoRR abs/1803.11254 (2018). http://arxiv.org/abs/1803.11254

  15. Pinheiro, P.H.O., Lin, T., Collobert, R., Dollár, P.: Learning to refine object segments. CoRR abs/1603.08695 (2016). http://arxiv.org/abs/1603.08695

  16. Ran, L., Zhang, Y., Zhang, Q., Yang, T.: Convolutional neural network-based robot navigation using uncalibrated spherical images. Sensors 17, 1341 (2017)

    Article  Google Scholar 

  17. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs/1506.01497 (2015). http://arxiv.org/abs/1506.01497

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015). http://arxiv.org/abs/1505.04597

    Google Scholar 

  19. Saez, A., Bergasa, L., Romeral, E., Guillén, M., Barea, R., Sanz, R.: CNN-based fisheye image real-time semantic segmentation, pp. 1039–1044, June 2018. https://doi.org/10.1109/IVS.2018.8500456

  20. Salvador, A., Bellver, M., Baradad, M., Marqués, F., Torres, J., Giró i Nieto, X.: Recurrent neural networks for semantic instance segmentation. CoRR abs/1712.00617 (2017). http://arxiv.org/abs/1712.00617

  21. Shipitko, O.: 3D pose estimation algorithm for intelligent box picking of warehouse automation robot (2018). https://www.researchgate.net/publication/325780223_3D_pose_estimation_algorithm_for_intelligent_box_picking_of_warehouse_automation_robot

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

  23. Su, Y., Grauman, K.: Flat2sphere: learning spherical convolution for fast features from 360\(^\circ \) imagery. CoRR abs/1708.00919 (2017). https://arxiv.org/pdf/1708.00919.pdf

  24. Szegedy, C., et al.: Going deeper with convolutions. CoRR abs/1409.4842 (2014). http://arxiv.org/abs/1409.4842

  25. Ter-Sarkisov, A., Ross, R.J., Kelleher, J.D., Earley, B., Keane, M.: Beef cattle instance segmentation using fully convolutional neural network. CoRR abs/1807.01972 (2018). http://arxiv.org/abs/1807.01972

  26. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. CoRR abs/1511.07122 (2015). http://arxiv.org/abs/1511.07122

  27. Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic segmentation on high-resolution images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 418–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_25

    Chapter  Google Scholar 

  28. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. CoRR abs/1612.01105 (2016). http://arxiv.org/abs/1612.01105

Download references

Acknowledgments

This work is supported by the German-Russian Interdisciplinary Science Center (G-RISC) funded by the German Federal Foreign Office via the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Beloshapko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beloshapko, A., Korkhov, V., Knoll, C., Iben, U. (2019). Industrial Fisheye Image Segmentation Using Neural Networks. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11622. Springer, Cham. https://doi.org/10.1007/978-3-030-24305-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24305-0_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24304-3

  • Online ISBN: 978-3-030-24305-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics