Nothing Special   »   [go: up one dir, main page]

Skip to main content

Security-State Estimation of Electrical Power Systems: A Methodological Proposal

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11620))

Included in the following conference series:

  • 1823 Accesses

Abstract

Security assessment techniques are a tool that allows the operational personnel of electrical systems to categorize operating conditions in different labels. Nowadays, the large size of power grids and the operating conditions close to their operating limits require efficient, safe and fast procedures to assess the overall grid security, being one of the challenges posed by smart grids conception. In this paper, a supervised learning approach that allows to integrate all the concepts of safety of the electrical network: voltage, angle, frequency, etc., to give an overall assessment of the system in terms of security which may be applied according to the regulations and geographical contexts of each country.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avalos, J.: Analysis and application of optimization techniques to power system security and electricity markets, Ph.D. thesis, University of Waterloo (2008)

    Google Scholar 

  2. Jian-Hua, Z., Guohua, Z., Manyin, D., Jingyan, Y.: Indices system and methods for urban power grid security assessment. In: Proceedings of APPEEC 2009, pp. 1–5 (2009)

    Google Scholar 

  3. Sunitha, R., Kumar, S.K., Mathew, A.T.: Online static security assessment module using artificial neural networks. IEEE Trans. Power Syst. 28(4), 4328–4335 (2013). https://doi.org/10.1109/tpwrs.2013.2267557

  4. Zhao, F., Guo, Q., Sun, H., Wang, M., Wang, B.: Power system online security operational trend analysis and simulation results. In: 2013 IEEE Power and Energy Society General Meeting (PES), pp. 1–15 (2013). https://doi.org/10.1109/pesmg.2013.6672773

  5. Sun, H., et al.: Automatic learning of fine operating rules for online power system security control. IEEE Trans. Neural Netw. Learn. Syst. PP(99) (2015). https://doi.org/10.1109/tnnls.2015.2390621

  6. Wang, J., et al.: Online probabilistic security risk assessment implementation at china southern power grid towards smart control center. In: 2015 Seventh Annual IEEE Green Technologies Conference (GreenTech), pp. 74–81. https://doi.org/10.1109/greentech.2015.18

  7. Beiraghi, M., Ranjbar, A.M.: Online voltage security assessment based on wide-area measurements. IEEE Trans. Power Deliv. 28(2), 989–997 (2013). https://doi.org/10.1109/TPWRD.2013.2247426

    Article  Google Scholar 

  8. Geeganage, J., Annakkage, U.D., Weekes, T., Archer, B.A.: Application of energy-based power system features for dynamic security assessment. IEEE Trans. Power Syst. 30(4), 1957–1965 (2015). https://doi.org/10.1109/TPWRS.2014.2353048

    Article  Google Scholar 

  9. Chakrabarti, A., Kothari, D., de Abhinandan, Mukhopadhyay, A.: An Introduction to Reactive Power Control and Voltage Stability in Power Transmission Systems. PHI Learning Private Limited (2010)

    Google Scholar 

  10. Chychykina, I., Styczynski, Z.A., Heyde, C.O., Krebs, R.: Power system instability prevention and remedial measures with online dynamic security assessment. In: 2015 IEEE Eindhoven PowerTech, pp. 1–5 (2015). https://doi.org/10.1109/ptc.2015.7232303

  11. Perez Londono, S., Rodriguez Garcia, L., Lopez, Y.U.: Effects of doubly fed wind generators on voltage stability of power systems. In: Proceedings of the Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA), pp. 1–6 (2012)

    Google Scholar 

  12. Taylor, C.: Power System Voltage Stability. McGraw-Hill, New York (1993)

    Google Scholar 

  13. Haque, M.: On-line monitoring of maximum permissible loading of a power system within voltage stability limits. IEE Proc. Gener. Transm. Distrib. 150(1), 107–112 (2003)

    Article  Google Scholar 

  14. Lee, C.Y., Tsai, S.-H., Wu, Y.-K.: A new approach to the assessment of steady-state voltage stability margins using the p-q-v curve. Int. J. Electr. Power Energy Syst. 32(10), 1091–1098 (2010)

    Article  Google Scholar 

  15. Momoh, J.A., Makarov, Y.V., Elfayoumy, M.: Expected angle stability margin. In: 1998 IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, pp. 3753–3758 (1998). https://doi.org/10.1109/icsmc.1998.726671

  16. Zhang, H., Liu, Y.: New index for frequency deviation security assessment. In: IPEC, 2010 Conference Proceedings, pp. 1031–1034 (2010). https://doi.org/10.1109/ipecon.2010.5696966

  17. Sevilla, F.R.S., Vanfretti, L.: A small-signal stability index for power system dynamic impact assessment using time-domain simulations. In: 2014 IEEE PES General Meeting | Conference Exposition, pp. 1–5 (2014). https://doi.org/10.1109/pesgm.2014.6938842

  18. Nguyen, T.B.: Dynamic security assessment of power systems using trajectory sensitivity approach, Ph.D. thesis, University of Illinois at Urbana-Champaign (2002)

    Google Scholar 

  19. Li, W.: Risk Assessment of power systems. In: IEEE Press Series on Power Engineering (2005)

    Google Scholar 

  20. Sanz, F.A., Ramirez, J.M., Correa, R.E.: Experimental design for a large power system vulnerability estimation. Electr. Power Syst. Res. 121, 20–27 (2015). https://doi.org/10.1016/j.epsr.2014.11.026

    Article  Google Scholar 

  21. Guyon, I.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  22. Gu, W., Wan, Q.: Linearized voltage stability index for wide-area voltage monitoring and control. Int. J. Electr. Power Energy Syst. 32(4), 333–336 (2010)

    Article  Google Scholar 

  23. Hall, M.A.: Correlation-based feature selection for machine learning, Ph.D. thesis, University of Waikato (1999)

    Google Scholar 

  24. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  25. Morash, V., Bai, O., Furlani, S., Lin, P., Hallett, M.: Classifying fEEGg signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Clin. Neurophysiol. 119(11), 2570–2578 (2008). https://doi.org/10.1016/j.clinph.2008.08.013

    Article  Google Scholar 

  26. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature Extraction: Foundations and Applications. Studies in Fuzziness and Soft Computing. Springer, New York (2006). https://doi.org/10.1007/978-3-540-35488-8

    Book  MATH  Google Scholar 

  27. Jensen, C.A., et al.: Inversion of feedforward neural networks: algorithms and applications. Proc. IEEE 87(9), 1536–1549 (1999). https://doi.org/10.1109/5.784232

    Article  Google Scholar 

  28. Innah, H., Asfani, D.A., Hiyama, T.: Voltage stability assessment based on discrimination principle. In: 2012 22nd Australasian Universities Power Engineering Conference (AUPEC), pp. 1–6 (2012)

    Google Scholar 

  29. Lakkireddy, J., Rastgoufard, R., Leevongwat, I., Rastgoufard, P.: Steady state voltage stability enhancement using shunt and series facts devices. In: 2015 Clemson University Power Systems Conference (PSC), pp. 1–5 (2015). https://doi.org/10.1109/psc.2015.7101706

  30. Kundur, P., Balu, N., Lauby, M.: Power System Stability and Control, EPRI Power System Engineering Series. McGraw-Hill, New York (1994)

    Google Scholar 

  31. Shi, Z., Huang, Y., Zhang, S.: Fisher score based naive Bayesian classifier. In: 2005 International Conference on Neural Networks and Brain, vol. 3, pp. 1616–1621 (2005)

    Google Scholar 

  32. Singh, B., Sankhwar, J.S., Vyas, O.P.: Optimization of feature selection method for high dimensional data using Fisher score and minimum spanning tree. In: 2014 Annual IEEE India Conference (INDICON), pp. 1–6 (2014)

    Google Scholar 

  33. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5, 1205–1224 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: IJCAI, pp. 1022–1029 (1993)

    Google Scholar 

  35. Chidlovskii, B., Lecerf, L.: Scalable feature selection for multi-class problems. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS, vol. 5211, pp. 227–240. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87479-9_33

    Chapter  Google Scholar 

  36. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Computer Science and Scientific Computing. Elsevier Science (2013)

    Google Scholar 

  37. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-2440-0

    Book  MATH  Google Scholar 

  38. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, Adaptive Computation and Machine Learning. MIT Press, Cambridge (2002)

    Google Scholar 

  39. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121–167 (1998)

    Article  Google Scholar 

  40. Bengio, Y., Grandvalet, Y.: Bias in estimating the variance of K-fold cross-validation. In: Duchesne, P., RÉMillard, B. (eds.) Statistical Modeling and Analysis for Complex Data Problems, pp. 75–95. Springer, Boston (2005). https://doi.org/10.1007/0-387-24555-3_5

    Chapter  Google Scholar 

  41. Li, J., et al.: Feature selection: a data perspective. CoRR abs/1601

    Google Scholar 

  42. Duarte, J., Garcia, J., Jimenez, J., Sanjuan, M.E., Bula, A., Gonzalez, J.: Autoignition control in spark-ignition engines using internal model control structure. J. Energy Resour. Technol. 139(2) (2016). http://energyresources.asmedigitalcollection.asme.org/article.aspx?articleid=2532521

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredy A. Sanz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanz, F.A., Collazos, C.A., Ruiz, I., Meléndez-Pertuz, F. (2019). Security-State Estimation of Electrical Power Systems: A Methodological Proposal. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11620. Springer, Cham. https://doi.org/10.1007/978-3-030-24296-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24296-1_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24295-4

  • Online ISBN: 978-3-030-24296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics