Abstract
An optimal control problem of two Unmanned autonomous Vehicles to follow the trajectory and avoid the collision between them. The aim is to minimize energy, the distance between state and desired, and maximize the distance between the two drones. For this study, we used midpoint such discretization method, the simulation results ar given by Bocop software.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)
Wise, K.A., Sedwick, J.L., Eberhardt, R.L.: Nonlinear control of missiles McDonnell Douglas Aerospace Report MDC 93B0484, October 1993
Ehrler, D., Vadali, S.R.: Examination of the optimal nonlinear regulator problem. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, Minneapolis, MN (1988)
Beard, R., et al.: Autonomous vehicle technologies for small fixed-wing UAVs. AIAA J. Aerosp. Comput. Inf. Commun. 2, 92–108 (2005)
Guo, W., Gao, X., Xiao, Q., Multiple UAV cooperative path planning based on dynamic Bayesian network. In: Control and Decision Conference (CCDC), pp. 2401–2405, July 2008
Mechirgui, M.: Commande Optimale minimisant la consommation d’énergie d’un Drone, Relai de communication, Maîtrise en Génie Eléctrique, Montréal, Le 15 Octobre 2014
Boudjellal, A.A., Boudjema, F.: Commande par Backstepping basée sur un Observateur Mode Glissant pour un Drone de type Quadri-rotor. In: ICEE2013 (2013)
Hull, D.G.: Optimal Control Theory for Applications. Springer, Heidelberg (2003). https://doi.org/10.1007/978-1-4757-4180-3
Trelat, E.: Contrôle optimal: théorie et applications, Vuibert, collection Mathématiques Concrètes (2005)
Sethi, S.P., Thompsonn, G.L.: Optimal Control Theory, Applications to Management Science and Economics, 2nd edn. Kluwer Academic Publishers, Dordrecht (2000)
Zaslavski, A.J.: Structure of Approximate Solutions of Optimal Control Problems. Springer, Heidelberg (2013)
Akulenko, L.D.: Problems and Methods of Optimal Control. Springer, Heidelberg (1994)
Pytlak, R.: Numerical Methods for Optimal Control Problems With State Constraints. Springer, Heidelberg (1999)
Demim, F., Louadj, K., Aidene, M., Nemra, A.: Solution of an optimal control problem with vector control using relaxation method. Autom. Control Syst. Eng. J. 16(2) (2016). ISSN 1687–4811
Louadj, K., Aidene, M.: Optimization of a problem of optimal control with free initial state. Appl. Math. Sci. 4(5), 201–216 (2010)
Louadj, K., Aidene, M.: Adaptive method for solving optimal control problem with state and control variables. Math. Probl. Eng. 2012, 15 (2012)
Louadj, K., Aidene, M.: Direct method for resolution of optimal control problem with free initial condition. Int. J. Differ. Equ. 2012, 18 (2012). Article ID 173634
Louadj, K., Aidene, M.: A problem of optimal control with free initial state. In: Proceedings du Congres National de Mathematiques Appliquees et Industrielles, SMAI 2011, Orleans du 23rd May to au 27th, pp. 184–190 (2011)
Titouche, S., Spiteri, P., Messine, F., Aidene, M.: Optimal control of a large thermic. J. Control Syst. 25, 50–58 (2015)
Geisert, M., Mansard, N.: Trajectory generation for Quadrotor based systems using numerical optimal control. In: IEEE International Conference on Robotics and Automation (ICRA) Stockholm, Sweden, 16–21 May 2016
Fethi, D., Nemra, A., Louadj, K., Hamerlain, M.: Simultaneous localization, mapping, and path planning for unmanned vehicle using optimal control. Adv. Mech. Eng. 10(1), 1–25 (2018)
Bonnans, F., Martinon, P., Grélard, V.: Bocop - a collection of examples. Research report RR-8053, INRIA (2012)
Louadj, K., Demim, F., Nemra, A., Marthon, P.: An optimal control problem of unmanned aerial vehicle. In: International an Conference on Control, Decision and Information Technologies (CoDIT 2018), Thessaloniki, 10 April 2018–13 April 2018 (2018)
Jalel, S.: Optimisation de la navigation robotique. Thesis, Toulouse University (INP) (2016)
Atyabi, A., Powers, D.: Review of classical and heuristic based navigation and path planning approaches. Int. J. Adv. Comput. Technol. 5(14), 1–14 (2013)
Jalel S., Marthon, P., Hamouda, A.: Optimum path planning for mobile robots is static environments using graph modelling and NURBS Curves. In: WSEAS International Conference on Signal Processing, Robotics and Automation, 20–22 February 2013, Cambridge, UK, pp. 216–221 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Louadj, K., Marthon, P., Nemra, A. (2019). Modeling an Optimal Control Problem for the Navigation of Mobile Robots in an Ocduded Environment Application to Unmanned Aerial Vehicles. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11620. Springer, Cham. https://doi.org/10.1007/978-3-030-24296-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-24296-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24295-4
Online ISBN: 978-3-030-24296-1
eBook Packages: Computer ScienceComputer Science (R0)