Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modeling an Optimal Control Problem for the Navigation of Mobile Robots in an Ocduded Environment Application to Unmanned Aerial Vehicles

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

An optimal control problem of two Unmanned autonomous Vehicles to follow the trajectory and avoid the collision between them. The aim is to minimize energy, the distance between state and desired, and maximize the distance between the two drones. For this study, we used midpoint such discretization method, the simulation results ar given by Bocop software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  2. Wise, K.A., Sedwick, J.L., Eberhardt, R.L.: Nonlinear control of missiles McDonnell Douglas Aerospace Report MDC 93B0484, October 1993

    Google Scholar 

  3. Ehrler, D., Vadali, S.R.: Examination of the optimal nonlinear regulator problem. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, Minneapolis, MN (1988)

    Google Scholar 

  4. Beard, R., et al.: Autonomous vehicle technologies for small fixed-wing UAVs. AIAA J. Aerosp. Comput. Inf. Commun. 2, 92–108 (2005)

    Article  Google Scholar 

  5. Guo, W., Gao, X., Xiao, Q., Multiple UAV cooperative path planning based on dynamic Bayesian network. In: Control and Decision Conference (CCDC), pp. 2401–2405, July 2008

    Google Scholar 

  6. Mechirgui, M.: Commande Optimale minimisant la consommation d’énergie d’un Drone, Relai de communication, Maîtrise en Génie Eléctrique, Montréal, Le 15 Octobre 2014

    Google Scholar 

  7. Boudjellal, A.A., Boudjema, F.: Commande par Backstepping basée sur un Observateur Mode Glissant pour un Drone de type Quadri-rotor. In: ICEE2013 (2013)

    Google Scholar 

  8. Hull, D.G.: Optimal Control Theory for Applications. Springer, Heidelberg (2003). https://doi.org/10.1007/978-1-4757-4180-3

    Book  MATH  Google Scholar 

  9. Trelat, E.: Contrôle optimal: théorie et applications, Vuibert, collection Mathématiques Concrètes (2005)

    Google Scholar 

  10. Sethi, S.P., Thompsonn, G.L.: Optimal Control Theory, Applications to Management Science and Economics, 2nd edn. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  11. Zaslavski, A.J.: Structure of Approximate Solutions of Optimal Control Problems. Springer, Heidelberg (2013)

    Book  Google Scholar 

  12. Akulenko, L.D.: Problems and Methods of Optimal Control. Springer, Heidelberg (1994)

    Book  Google Scholar 

  13. Pytlak, R.: Numerical Methods for Optimal Control Problems With State Constraints. Springer, Heidelberg (1999)

    Book  Google Scholar 

  14. Demim, F., Louadj, K., Aidene, M., Nemra, A.: Solution of an optimal control problem with vector control using relaxation method. Autom. Control Syst. Eng. J. 16(2) (2016). ISSN 1687–4811

    Google Scholar 

  15. Louadj, K., Aidene, M.: Optimization of a problem of optimal control with free initial state. Appl. Math. Sci. 4(5), 201–216 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Louadj, K., Aidene, M.: Adaptive method for solving optimal control problem with state and control variables. Math. Probl. Eng. 2012, 15 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Louadj, K., Aidene, M.: Direct method for resolution of optimal control problem with free initial condition. Int. J. Differ. Equ. 2012, 18 (2012). Article ID 173634

    Article  MathSciNet  Google Scholar 

  18. Louadj, K., Aidene, M.: A problem of optimal control with free initial state. In: Proceedings du Congres National de Mathematiques Appliquees et Industrielles, SMAI 2011, Orleans du 23rd May to au 27th, pp. 184–190 (2011)

    Google Scholar 

  19. Titouche, S., Spiteri, P., Messine, F., Aidene, M.: Optimal control of a large thermic. J. Control Syst. 25, 50–58 (2015)

    Google Scholar 

  20. Geisert, M., Mansard, N.: Trajectory generation for Quadrotor based systems using numerical optimal control. In: IEEE International Conference on Robotics and Automation (ICRA) Stockholm, Sweden, 16–21 May 2016

    Google Scholar 

  21. Fethi, D., Nemra, A., Louadj, K., Hamerlain, M.: Simultaneous localization, mapping, and path planning for unmanned vehicle using optimal control. Adv. Mech. Eng. 10(1), 1–25 (2018)

    Article  Google Scholar 

  22. Bonnans, F., Martinon, P., Grélard, V.: Bocop - a collection of examples. Research report RR-8053, INRIA (2012)

    Google Scholar 

  23. Louadj, K., Demim, F., Nemra, A., Marthon, P.: An optimal control problem of unmanned aerial vehicle. In: International an Conference on Control, Decision and Information Technologies (CoDIT 2018), Thessaloniki, 10 April 2018–13 April 2018 (2018)

    Google Scholar 

  24. Jalel, S.: Optimisation de la navigation robotique. Thesis, Toulouse University (INP) (2016)

    Google Scholar 

  25. Atyabi, A., Powers, D.: Review of classical and heuristic based navigation and path planning approaches. Int. J. Adv. Comput. Technol. 5(14), 1–14 (2013)

    Google Scholar 

  26. Jalel S., Marthon, P., Hamouda, A.: Optimum path planning for mobile robots is static environments using graph modelling and NURBS Curves. In: WSEAS International Conference on Signal Processing, Robotics and Automation, 20–22 February 2013, Cambridge, UK, pp. 216–221 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kahina Louadj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Louadj, K., Marthon, P., Nemra, A. (2019). Modeling an Optimal Control Problem for the Navigation of Mobile Robots in an Ocduded Environment Application to Unmanned Aerial Vehicles. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11620. Springer, Cham. https://doi.org/10.1007/978-3-030-24296-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24296-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24295-4

  • Online ISBN: 978-3-030-24296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics