Nothing Special   »   [go: up one dir, main page]

Skip to main content

Economical Sixth Order Runge–Kutta Method for Systems of Ordinary Differential Equations

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11619))

Included in the following conference series:

  • 1540 Accesses

Abstract

Structural partitioning of systems of ordinary differential equations is made on base of right-hand side dependencies on the unknown variables. It is used to construct fully explicit Runge–Kutta methods with several computational schemes applied to different parts of the system. The constructed structural methods require fewer right-hand side evaluations (stages) per step for some parts of the system than classic explicit Runge–Kutta methods of the same order. The full structural form of the system is presented, which after permutation of variables can be applied to any system of ordinary differential equation. For such structure a multischeme method is formulated and conditions of the sixth order are written down. We present simplifying conditions and reduce the system to a solvable smaller system. A particular computational scheme, that requires seven stages for a group without special structure and only six stages for other equations, is presented. Its sixth order is confirmed by a numerical convergence test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bubnov, V.P., Eremin, A.S., Kovrizhnykh, N.A., Olemskoy, I.V.: Comparative study of the advantages of structural numerical integration methods for ordinary differential equations. SPIIRAS Proc. 4(53), 51–72 (2017)

    Article  Google Scholar 

  2. Butcher, J.C.: On Runge-Kutta processes of high order. J. Australian Math. Soc. 4(2), 179–194 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, Chichester (2008)

    Book  MATH  Google Scholar 

  4. Butcher, J.C., Chan, T.M.H.: The tree and forest spaces with applications to initial-value problem methods. BIT Numer. Math. 50, 713–728 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eremin, A.S., Kovrizhnykh, N.A.: Continuous extensions for structural Runge–Kutta methods. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10405, pp. 363–378. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62395-5_25

    Chapter  Google Scholar 

  6. Eremin, A.S., Kovrizhnykh, N.A., Olemskoy, I.V.: An explicit one-step multischeme sixth order method for systems of special structure. Appl. Math. Comput. 347, 853–864 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Eremin, A.S., Olemskoy, I.V.: Functional continuous Runge-Kutta methods for special systems. In: Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2015 (ICNAAM-2015)/AIP Conference Proceedings, vol. 1738, p. 100003 (2016)

    Google Scholar 

  8. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics, 3rd edn. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78862-1

    Book  MATH  Google Scholar 

  9. Hofer, E.: A partially implicit method for large stiff systems of ODEs with only few equations introducing small time-constants. SIAM J. Numer. Anal. 13(5), 645–663 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, D., Persson, P.O., Zahr, M.: High-order, linearly stable, partitioned solvers for general multiphysics problems based on implicit-explicit Runge-Kutta schemes. Comput. Methods Appl. Mech. Eng. 346, 674–706 (2019)

    Article  MathSciNet  Google Scholar 

  11. Ketcheson, D.I., MacDonald, C., Ruuth, S.J.: Spatially partitioned embedded Runge-Kutta methods. SIAM J. Numer. Anal. 51(5), 2887–2910 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kincaid, D., Cheney, W.: Numerical Analysis: Mathematics of Scientific Computing, Pure and Applied Undergraduate Texts, vol. 2, 3rd edn. AMS, Providence (2002)

    Google Scholar 

  13. McLachlan, R., Ryland, B., Sun, Y.: High order multisymplectic Runge-Kutta methods. SIAM J. Sci. Comput. 36(5), A2199–A2226 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Monovasilis, T., Kalogiratou, Z., Simos, T.E.: A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Olemskoy, I.V.: Fifth-order four-stage method for numerical integration of special systems. Comput. Math. Math. Phys. 42(8), 1135–1145 (2002)

    MathSciNet  Google Scholar 

  16. Olemskoy, I.V.: Structural approach to the design of explicit one-stage methods. Comput. Math. Math. Phys. 43(7), 918–931 (2003)

    MathSciNet  Google Scholar 

  17. Olemskoy, I.V.: Modifikatsiya algoritma vydeleniya strukturnykh osobennostei [modification of structural properties detection algorithm]. Vestn. St-Petersburg Uni. Appl. Math. Comp. Sci. Contr. Proc. 2, 55–64 (2006). [In Russian]

    Google Scholar 

  18. Olemskoy, I.V., Eremin, A.S.: An embedded method for integrating systems of structurally separated ordinary differential equations. Comput Math. Math. Phys. 50(3), 414–427 (2010)

    Article  MathSciNet  Google Scholar 

  19. Olemskoy, I.V., Eremin, A.S.: An embedded fourth order method for solving structurally partitioned systems of ordinary differential equations. Appl. Math. Sci. 9(97–100), 4843–4852 (2015)

    Google Scholar 

  20. Olemskoy, I.V., Eremin, A.S., Ivanov, A.P.: Sixth order method with six stages for integrating special systems of ordinary differential equations. In: 2015 International Conference “Stability and Control Processes” in Memory of V.I. Zubov (SCP), pp. 110–113 (2015)

    Google Scholar 

  21. Olemskoy, I.V., Kovrizhnykh, N.A.: A family of sixth-order methods with six stages. Vestn. St-Petersburg Uni. Appl. Math. Comp. Sci. Contr. Proc. 14(3), 215–229 (2018)

    Google Scholar 

  22. Ralston, A., Rabinowitz, P.: A First Course in Numerical Analysis. Dover Books on Mathematics, 2nd edn. Dover Publications, New York (2001)

    MATH  Google Scholar 

  23. Rentrop, P.: Partitioned Runge-Kutta methods with stiffness detection and stepsize control. Numer. Math. 47, 545–564 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Respondek, J.S.: Controllability of dynamical systems with constraints. Syst. Control Lett. 54(4), 293–314 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Respondek, J.S.: Numerical simulation in the partial differential equation controllability analysis with physically meaningful constraints. Math. Comput. Simul. 81(1), 120–132 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Respondek, J.S.: Incremental numerical recipes for the high efficient inversion of the confluent Vandermonde matrices. Comput. Math. Appl. 71(2), 489–502 (2016)

    Article  MathSciNet  Google Scholar 

  27. Sandu, A., Günther, M.: A generalized-structure approach to additive Runge-Kutta methods. SIAM J. Numer. Anal. 53(1), 17–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sandu, A., Günther, M.: Multirate generalized additive Runge-Kutta methods. Numer. Math. 133(3), 497–524 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, D., Xiao, A., Li, X.: Parametric symplectic partitioned Runge-Kutta methods with energy-preserving properties for Hamiltonian systems. Comput. Phys. Commun. 184(2), 303–310 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey S. Eremin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eremin, A.S., Kovrizhnykh, N.A., Olemskoy, I.V. (2019). Economical Sixth Order Runge–Kutta Method for Systems of Ordinary Differential Equations. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics