Nothing Special   »   [go: up one dir, main page]

Skip to main content

Normalized Gain and Least Squares to Measure of the Effectiveness of a Physics Course

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

We present a quantitative analysis using the concepts of Normalized Gain and Least Squares in a process of Physics Teaching. This paper presents the results of the strategy based in The Construction of Prototypes (TCP) and Project Based Learning (PrBL) which was applied in a course of Mechanics in Bogotá-Colombia. The strategy focuses on three topics of Rotational Dynamics Teaching (RDT) specifically at centripetal force, Inertia moment and theorem de parallel axes and angular momentum conservation. We present results and analysis of employed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hernández, C.: Aprendizaje de la Física en estudiantes de diseño Industrial dentro de una innovación pedagógica consistente en el constructivismo, Tesis de Maestria en Educación, Uniandes (2004)

    Google Scholar 

  2. Vygotsky, L.: Pensamiento y lenguaje. Alfa y Omega, México (1985)

    Google Scholar 

  3. Thornton, R.K., Sokoloff, D.R.: Learning motion concepts using real-time microcomputer-based laboratory tools. Am. J. Phys. 58, 858–867 (1990)

    Article  Google Scholar 

  4. Mokros, J.R., Tinker, R.F.: The impact of MicroComputer Based Labs on children’s ability to interpret graphs. J. Res. Sci. Teach. 24, 369–383 (1987)

    Article  Google Scholar 

  5. McDermott, L.C., Rosenquist, M.L., van Zee, E.H.: Student difficulties in connecting graphs and physics: examples from kinematics. Am. J. Phys. 55, 503–513 (1987)

    Article  Google Scholar 

  6. Redish, E.F., Saul, J.M., Steinberg, R.N.: On the effectiveness of active-engagement microcomputer-based laboratories. Am. J. Phys. 65, 45–54 (1997)

    Article  Google Scholar 

  7. Stankova, E.N., Barmasov, A.V., Dyachenko, N.V., Bukina, M.N., Barmasova, A.M., Yakovleva, T.Yu.: The use of computer technology as a way to increase efficiency of teaching physics and other natural sciences. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9789, pp. 581–594. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42089-9_41

    Chapter  Google Scholar 

  8. Lisachenko, D.A., Barmasov, A.V., Bukina, M.N., Stankova, E.N., Vysotskaya, S.O., Zarochentseva, E.P.: Best practices combining traditional and digital technologies in education. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 483–494. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_36

    Chapter  Google Scholar 

  9. Dyachenko, N.V., Barmasov, A.V., Stankova, E.N., Struts, A.V., Barmasova, A.M., Yakovleva, T.Yu.: Prototype of informational infrastructure of a program instrumentation complex for carrying out a laboratory practicum on physics in a university. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 412–427. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_30

    Chapter  Google Scholar 

  10. Comas, Z., Echeverri, I., Zamora, R., Vélez, J., Sarmiento, R., Orellana, M.: Tendencias recientes de la Educación Virtual y su fuerte conexión con los Entornos Inmersivos. Revista Espacios 38, 4–10 (2017)

    Google Scholar 

  11. Stankova, E.N., Dyachenko, N.V., Tibilova, G.S.: Virtual laboratories: prospects for the development of techniques and methods of work. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10963, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95171-3_1

    Chapter  Google Scholar 

  12. Collazos, C.A.: Construcción de un prototipo para experimentos de Mécanica. Lat. Am. J. Phys. Educ. 4(Suppl. 1), 840–843 (2010)

    Google Scholar 

  13. http://www.fisicacollazos.260mb.com. Accessed 15 Jan 2019

  14. Riley, M.: Test Bank. W. H. Freeman and Company, New York (2003)

    Google Scholar 

  15. Hake, R.R.: Interactive-engagement vs traditional methods: a six-thousand-student survey of mechanics test data for introductory physics courses. Am. J. Phys. 66, 64–74 (1997)

    Article  Google Scholar 

  16. Spiegel, M.: Estadística. McGraw-Hill, Madrid (1991)

    Google Scholar 

  17. Collazos, C.A.: Prototipo para la Enseñanza de la dinámica rotacional (conservación del momento angular). Lat. Am. J. Phys. Educ. 3, 446–448 (2009)

    Google Scholar 

  18. Collazos, C.A.: Enseñanza de la conservación del momento angular por medio de la construcción de prototipos y el aprendizaje basado en proyectos. Lat. Am. J. Phys. Educ. 3, 428–432 (2009)

    Google Scholar 

  19. Collazos, C.A.: Prototipo para la Enseñanza de la dinámica rotacional (Momento de Inercia y teorema de ejes paralelos). Lat. Am. J. Phys. Educ. 3, 619–624 (2009)

    Google Scholar 

  20. Collazos, C.A., Mora, C.E.: Prototipo para medir Fuerza Centrípeta en función de masa, radio y periodo. Lat. Am. J. Phys. Educ. 5, 520–525 (2011)

    Google Scholar 

  21. Collazos, C.A., Mora, C.E.: Experimentos de mecánica con temporizador de bajo costo. Revista Brasileira de Ensino de Física 34, 4311 (2012)

    Google Scholar 

  22. Collazos, C.A., Otero, H.R., Isaza, J., Mora, C.: Enseñanza de la Electrostática por Medio de la Construcción de Prototipos de Bajo Costo y el Aprendizaje Basado en Proyectos. Formación universitaria 9, 115–122 (2016)

    Article  Google Scholar 

  23. Collazos, C.A., Otero, H.R., Isaza, J.J., Mora, C.: Diseño y Construcción de una Máquina de Wimshurst para La Enseñanza de la Electrostática. Formación universitaria 9, 107–116 (2016)

    Article  Google Scholar 

  24. Castellanos, H.E., Collazos, C.A., Farfan, J.C., Meléndez-Pertuz, F.: Diseño y Construcción de un Canal Hidráulico de Pendiente Variable. Información tecnológica 28, 103–114 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Collazos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Collazos, C.A. et al. (2019). Normalized Gain and Least Squares to Measure of the Effectiveness of a Physics Course. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics