Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improving the Performance of an Integer Linear Programming Community Detection Algorithm Through Clique Filtering

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

Different fields of science use network representation as a framework to model their systems. The analysis of network structure can give us essential information about the system. However, the size of such a network can limit the applicability of some fundamental techniques like mathematical programming. Thus, here we propose a novel network size reduction technique based on a clique filtering approach. Our goal is twofold: (1) reduce the network size and speed up the community detection process, and (2) preserve the modularity of the original partition in the context of the exact model. Conducted experiments show the feasibility and correctness of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathematical programming. Eur. Phys. J. B 66(3), 409–418 (2008)

    Article  MathSciNet  Google Scholar 

  2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Modern Phys. 74(1), 47 (2002). https://doi.org/10.1103/RevModPhys.74.47

    Article  MathSciNet  MATH  Google Scholar 

  3. Arenas, A., Duch, J., Fernández, A., Gómez, S.: Size reduction of complex networks preserving modularity. New J. Phys. 9(6), 176 (2007). https://doi.org/10.1088/1367-2630/9/6/176

    Article  MathSciNet  Google Scholar 

  4. Bonchi, F., Morales, G.D.F., Gionis, A., Ukkonen, A.: Activity preserving graph simplification. Data Min. Knowl. Discov. 27(3), 321–343 (2013)

    Article  MathSciNet  Google Scholar 

  5. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  6. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)

    Article  MathSciNet  Google Scholar 

  7. Gemmetto, V., Cardillo, A., Garlaschelli, D.: Irreducible network backbones: unbiased graph filtering via maximum entropy. arXiv preprint arXiv:1706.00230 (2017)

  8. Gionis, A., Rozenshtein, P., Tatti, N., Terzi, E.: Community-aware network sparsification. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 426–434. SIAM (2017)

    Chapter  Google Scholar 

  9. IBM: IBM ILOG CPLEX 12.7.1 (1987–2017)

    Google Scholar 

  10. Kim, J.R., Kim, J., Kwon, Y.K., Lee, H.Y., Heslop-Harrison, P., Cho, K.H.: Reduction of complex signaling networks to a representative kernel. Sci. Signal. 4(175), ra35–ra35 (2011)

    Article  Google Scholar 

  11. Miyauchi, A., Sukegawa, N.: Redundant constraints in the standard formulation for the clique partitioning problem. Optim. Lett. 9(1), 199–207 (2015)

    Article  MathSciNet  Google Scholar 

  12. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004). https://doi.org/10.1103/PhysRevE.69.026113

    Article  Google Scholar 

  13. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003). https://doi.org/10.1137/S003614450342480

    Article  MathSciNet  MATH  Google Scholar 

  14. Newman, M.E.: Analysis of weighted networks. Phys. Rev. E 70(5), 056131 (2004)

    Article  Google Scholar 

  15. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006). https://doi.org/10.1073/pnas.0601602103

    Article  Google Scholar 

  16. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015). http://networkrepository.com

  17. Stanley, N., Kwitt, R., Niethammer, M., Mucha, P.J.: Compressing networks with super nodes. CoRR abs/1706.04110 (2017). http://arxiv.org/abs/1706.04110

  18. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001). https://doi.org/10.1038/35065725

    Article  MATH  Google Scholar 

  19. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998). https://doi.org/10.1038/30918

    Article  MATH  Google Scholar 

  20. Xiao, Y., MacArthur, B.D., Wang, H., Xiong, M., Wang, W.: Network quotients: structural skeletons of complex systems. Phys. Rev. E 78(4), 046102 (2008)

    Article  Google Scholar 

Download references

Acknowledgment

M.G.Q. acknowledges the support by São Paulo Research Foundation (FAPESP, Proc. 2011/18496-7 & 2015/50122-0) and by the the Brazilian National Research Council (CNPq Proc. 310908/2015-9 & 434886/2018-1). L.A.N.L. acknowledges the support by (CNPq Proc. 301836/2014-0) and L.H.N.L. acknowledges the support by Coordination of Superior Level Staff Improvement (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Gonçalves Quiles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lorena, L.H.N., Quiles, M.G., Lorena, L.A.N. (2019). Improving the Performance of an Integer Linear Programming Community Detection Algorithm Through Clique Filtering. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics