Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Survey on Network Traffic Identification

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11635))

Included in the following conference series:

  • 2399 Accesses

Abstract

With the rapid development of the Internet, the scale of Internet users has been expanding. At the same time, various mobile phone applications have emerged in an endless stream. While providing users with a variety of services, it also leads to the difficulty of user identification. All those things bring new challenges to traffic identification. Based on the importance of Internet traffic identification for Internet management and security, this paper describes the classification methods and problems faced by Internet traffic identification. Moreover, current work about user-related and application-related traffic identification methods is summarized and analyzed. At the end of this article, we will discuss the future research prospects of traffic identification and summarize the content of the article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. FBI: 2017 Internet Crime Report. https://pdf.ic3.gov/2017_IC3Report.pdf. Accessed 10 Nov 2018

  2. Internet Live Stats. http://www.internetlivestats.com/internet-users. Accessed 10 Nov 2018

  3. Claffy, K.C., Braun, H.W., Polyzos, G.C.: A parameterizable methodology for Internet traffic flow profiling. IEEE J. Sel. Areas Commun. 13(8), 1481–1494 (1995)

    Article  Google Scholar 

  4. IANA Port Number List. https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml. Accessed 10 Nov 2018

  5. Husák, M., Čermák, M., Jirsík, T., et al.: HTTPS traffic analysis and client identification using passive SSL/TLS fingerprinting. EURASIP J. Inf. Secur. 2016(1), 6 (2016)

    Article  Google Scholar 

  6. Celeda, P.: Network-based HTTPS client identification using SSL/TLS fingerprinting. In: International Conference on Availability, Reliability and Security, pp. 389–396. IEEE Computer Society (2015)

    Google Scholar 

  7. Masud, M.M., Al-Khateeb, T., Khan, L., et al.: Flow-based identification of botnet traffic by mining multiple log files. In: International Conference on Distributed Framework and Applications, pp. 200–206. IEEE (2009)

    Google Scholar 

  8. Ibrahim, H.A.H., Nor, S.M., Jamil, H.A.: Online hybrid internet traffic classification algorithm based on signature statistical and port methods to identify internet applications. In: IEEE International Conference on Control System, Computing and Engineering, pp. 185–190. IEEE (2014)

    Google Scholar 

  9. Bolzoni, D., Etalle, S., Hartel, P., et al.: POSEIDON: a 2-tier anomaly-based network intrusion detection system. In: IEEE International Workshop on Information Assurance, 10 pp.-156

    Google Scholar 

  10. Dharmapurikar, S., Krishnamurthy, P., Sproull, T.S., et al.: Deep packet inspection using parallel bloom filters. IEEE Micro 24(1), 52–61 (2004)

    Article  Google Scholar 

  11. Sherry, J., Lan, C., Popa, R.A., et al.: BlindBox: deep packet inspection over encrypted traffic. ACM SIGCOMM Comput. Commun. Rev. 45(5), 213–226 (2015)

    Article  Google Scholar 

  12. Ise I.: Specification of the IP flow information export (IPFIX) protocol for the exchange of IP traffic flow information RFC 5101 (2008)

    Google Scholar 

  13. Liu, J., Liu, F., He, D.: The identification for P2P thunder traffic based on deep flow identification. In: International Conference on Cloud Computing and Intelligent Systems, pp. 504–507. IEEE (2013)

    Google Scholar 

  14. Meidan, Y., Bohadana, M., Shabtai, A., et al.: ProfilIoT: a machine learning approach for IoT device identification based on network traffic analysis. In: Symposium on Applied Computing, pp. 506–509. ACM (2017)

    Google Scholar 

  15. Zander, S., Nguyen, T., et al.: Automated traffic classification and application identification using machine learning. In: IEEE Conference on Local Computer Networks, Anniversary, pp. 250–257. IEEE (2005)

    Google Scholar 

  16. Clarke, N., Li, F., Furnell, S.: A novel privacy preserving user identification approach for network traffic. Comput. Secur. 70, 335–350 (2017)

    Article  Google Scholar 

  17. Yoon, S.H., Park, J.S., Kim, M.S., et al.: Behavior signature for big data traffic identification. In: International Conference on Big Data and Smart Computing, pp. 261–266. IEEE (2014)

    Google Scholar 

  18. Shim, K.S., Yoon, S.H., Sija, B.D., et al.: Effective behavior signature extraction method using sequence pattern algorithm for traffic identification. Int. J. Netw. Manag. 28(5), e2011 (2017)

    Google Scholar 

  19. Conti, M., Mancini, L.V., Spolaor, R., et al.: Can’t you hear me knocking: identification of user actions on android apps via traffic analysis. In: ACM Conference on Data and Application Security and Privacy, pp. 297–304. ACM (2015)

    Google Scholar 

  20. Jaiswal, R.C., Lokhande, S.D.: Machine learning based internet traffic recognition with statistical approach (2013)

    Google Scholar 

  21. Zander, S., Nguyen, T.T.T., Armitage, G.J.: Automated traffic classification and application identification using machine learning. In: IEEE Conference on Local Computer Networks. IEEE (2005)

    Google Scholar 

  22. Crotti, M., Dusi, M., Gringoli, F., et al.: Traffic classification through simple statistical fingerprinting. ACM SIGCOMM Comput. Commun. Rev. 37(1), 5 (2007)

    Article  Google Scholar 

  23. Zhang, J., Chen, C., Xiang, Y., et al.: Robust network traffic identification with unknown applications. In: ACM SIGSAC Symposium on Information. ACM (2013)

    Google Scholar 

  24. Gu, X., Yang, M., Fei, J., et al.: A novel behavior-based tracking attack for user identification. In: Third International Conference on Advanced Cloud & Big Data. IEEE (2016)

    Google Scholar 

  25. Shi, J., Zhang, Z., Li, Y., Wang, R., Shi, H., Li, X.: New method for computer identification through electromagnetic radiation. CMC: Comput. Mater. Continua 57(1), 69–80 (2018)

    Google Scholar 

  26. Liu, Y., Peng, H., Wang, J.: Verifiable diversity ranking search over encrypted outsourced data. CMC: Comput. Mater. Continua 55(1), 037–057 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Key Research & Development Plan of China under Grant 2016QY05X1000, National Natural Science Foundation of China under Grant No. 61771166, CERNET Innovation Project under Grant  No. NGII20170101, and Dongguan Innovative Research Team Program under Grant No. 201636000100038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuping Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Q., Li, D., Xin, Y., Yu, X., Mu, G. (2019). A Survey on Network Traffic Identification. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11635. Springer, Cham. https://doi.org/10.1007/978-3-030-24268-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24268-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24267-1

  • Online ISBN: 978-3-030-24268-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics