Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Review of the Factorization Problem of Large Integers

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11635))

Included in the following conference series:

Abstract

Large integer decomposition is the most direct attack method of RSA public key encryption algorithm, and it is closely related to the security of RSA. Therefore, the problem of large integer decomposition has become a problem for cryptographers and mathematicians. The main purpose of this paper is to discuss the current research situation of large integer decomposition problem, analyze the basic principle and implementation method of the current mainstream large integer decomposition algorithm, and forecast the future research trend of large integer decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, D., Luo, M., Zhao, B.: Provably secure APK redevelopment authorization scheme in the standard model. Comput. Mater. Cortinua 56(3), 447–465 (2018)

    Google Scholar 

  2. Pomerance, C.: A tale of two sieves. Not. AMS 43(12), 1473–1485 (1996)

    MathSciNet  MATH  Google Scholar 

  3. MathWorld Headline news. http://mathworld.wolfram.com/news/2003-12-05/rsa/. Accessed 24 Oct 2018

  4. Factorization of RSA-180. https://eprint.iacr.org/2010/270.pdf,last. Accessed 24 Oct 2018

  5. RSA-190 factored. https://mersenneforum.org/showpost.php?p=236114&postcount=1,last. Accessed 24 Oct 2018

  6. MathWorld Headline news. http://mathworld.wolfram.com/news/2005-11-08/rsa-640/,last. Accessed 24 Oct 2018

  7. RSA-210 factored. https://www.mersenneforum.org/showpost.php?p=354259,last. Accessed 24 Oct 2018

  8. Factorization of RSA-704 with cado-nfs. https://eprint.iacr.org/2012/369.pdf,last. Accessed 24 Oct 2018

  9. Factorization of RSA-220 with cado-nfs. https://members.loria.fr/PZimmermann/papers/rsa220.pdf,last. Accessed 24 Oct 2018

  10. Factorization of a 768-bit RSA modules. https://eprint.iacr.org/2010/006.pdf,last. Accessed 24 Oct 2018

  11. Pollard, J.M.: A Monte Carlo method for factorization. BIT Numer. Math. 15(3), 331–334 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brent, R.P.: An improved Monte Carlo factorization algorithm. BIT Numer. Math. 20(2), 176–184 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pollard, J.M.: Theorems of factorization and primality testing. In: Proceedings of the Cambridge Philosophical Society, vol. 76, no. 3, pp. 521–528 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lenstra, H.W.: Factoring integers with elliptic curves. Ann. Math. 126(3), 64–73 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dixon, J.D.: Asymptotically fast factorization of integers. Math. Comput. 36(153), 255–260 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pomerance, C.: The quadratic sieve factoring algorithm. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 169–182. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39757-4_17

    Chapter  Google Scholar 

  17. Lenstra, A.K., Lenstra, H.W. (eds.): The Development of the Number Field Sieve. LNM, vol. 1554. Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0091534

    Book  MATH  Google Scholar 

  18. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  19. Vandersypen, L.M.K., Steffen, M.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414(6866), 883–887 (2001)

    Article  Google Scholar 

  20. Tang, X., Xu, J., Duan, B.: A memory-efficient simulation method of Grover’s search algorithm. Comput. Mater. Continua 57(2), 307–319 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by the National Key Research and Development Plan (Grant No. 2018YFB0803504) and the National Natural Science Foundation of China (No. U1636215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Li, M., Jiang, Y., Sun, Y. (2019). A Review of the Factorization Problem of Large Integers. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11635. Springer, Cham. https://doi.org/10.1007/978-3-030-24268-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24268-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24267-1

  • Online ISBN: 978-3-030-24268-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics