Nothing Special   »   [go: up one dir, main page]

Skip to main content

Guiding High-Performance SAT Solvers with Unsat-Core Predictions

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2019 (SAT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11628))

Abstract

The NeuroSAT neural network architecture was introduced in [37] for predicting properties of propositional formulae. When trained to predict the satisfiability of toy problems, it was shown to find solutions and unsatisfiable cores on its own. However, the authors saw “no obvious path” to using the architecture to improve the state-of-the-art. In this work, we train a simplified NeuroSAT architecture to directly predict the unsatisfiable cores of real problems. We modify several state-of-the-art SAT solvers to periodically replace their variable activity scores with NeuroSAT’s prediction of how likely the variables are to appear in an unsatisfiable core. The modified MiniSat solves 10% more problems on SATCOMP-2018 within the standard 5,000 second timeout than the original does. The modified Glucose solves 11% more problems than the original, while the modified Z3 solves 6% more. The gains are even greater when the training is specialized for a specific distribution of problems; on a benchmark of hard problems from a scheduling domain, the modified Glucose solves 20% more problems than the original does within a one-hour timeout. Our results demonstrate that NeuroSAT can provide effective guidance to high-performance SAT solvers on real problems.

D. Selsam—This paper describes work performed while the first author was at Microsoft Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In MiniSat, this involves setting the activity vector to these values, resetting the variable increment to 1.0, and rebuilding the order-heap.

  2. 2.

    http://ada.liacs.nl/events/sparkle-sat-18/documents/floc-18-sparkle-extended.pdf.

  3. 3.

    https://github.com/msoos/cryptominisat/.

  4. 4.

    https://github.com/msoos/drat-trim/.

  5. 5.

    https://github.com/marijnheule/drat-trim.

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation OSDI 16, pp. 265–283 (2016)

    Google Scholar 

  2. Balcan, M., Dick, T., Sandholm, T., Vitercik, E.: Learning to branch. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10–15, 2018. JMLR Workshop and Conference Proceedings, vol. 80, pp. 353–362. JMLR.org (2018). http://proceedings.mlr.press/v80/balcan18a.html

  3. Balunovic, M., Bielik, P., Vechev, M.T.: Learning to solve SMT formulas. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8 December 2018, Montréal, Canada. pp. 10338–10349 (2018). http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas

  4. Biere, A., Fröhlich, A.: Evaluating CDCL variable scoring schemes. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 405–422. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_29

    Chapter  Google Scholar 

  5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

    Google Scholar 

  6. de Moura, L., Passmore, G.O.: The Strategy Challenge in SMT Solving. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS (LNAI), vol. 7788, pp. 15–44. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36675-8_2

    Chapter  Google Scholar 

  7. Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed, A.r., Kohli, P.: RobustFill: neural program learning under noisy I/O. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 990–998. JMLR. org (2017)

    Google Scholar 

  8. Heule, M., van Maaren, H.: Look-ahead based SAT solvers. In: Biere et al. [5], pp. 155–184. https://doi.org/10.3233/978-1-58603-929-5-155

  9. Heule, M.J.: Schur number five. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  10. Heule, M.J.H., Kullmann, O., Biere, A.: Cube-and-conquer for satisfiability. Handbook of Parallel Constraint Reasoning, pp. 31–59. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63516-3_2

    Chapter  Google Scholar 

  11. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_15

    Chapter  MATH  Google Scholar 

  12. Proceedings of sat competition 2018; solver and benchmark descriptions (2018). http://hdl.handle.net/10138/237063

  13. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition. IEEE Sig. Process. Mag. 29 (2012)

    Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  15. Hoder, K., Reger, G., Suda, M., Voronkov, A.: Selecting the selection. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 313–329. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1_22

    Chapter  Google Scholar 

  16. Huang, D., Dhariwal, P., Song, D., Sutskever, I.: GamePad: A learning environment for theorem proving. arXiv preprint arXiv:1806.00608 (2018)

  17. Irving, G., Szegedy, C., Alemi, A.A., Een, N., Chollet, F., Urban, J.: DeepMath-deep sequence models for premise selection. In: Advances in Neural Information Processing Systems, pp. 2235–2243 (2016)

    Google Scholar 

  18. Kaliszyk, C., Chollet, F., Szegedy, C.: HolStep: A machine learning dataset for higher-order logic theorem proving. arXiv preprint arXiv:1703.00426 (2017)

  19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Knuth, D.E.: Estimating the efficiency of backtrack programs. Math. Comput. 29(129), 122–136 (1975)

    Article  MathSciNet  Google Scholar 

  21. Knuth, D.E.: The Art of Computer Programming, vol. 4, Fascicle 6: Satisfiability (2015)

    Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  23. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  24. Kullmann, O.: Fundaments of branching heuristics. In: Biere et al. [5], pp. 205–244. https://doi.org/10.3233/978-1-58603-929-5-205

  25. Lawler, E.L., Wood, D.E.: Branch-and-bound methods: a survey. Oper. Res. 14(4), 699–719 (1966)

    Article  MathSciNet  Google Scholar 

  26. Liang, J., K., H.G.V., Poupart, P., Czarnecki, K., Ganesh, V.: An empirical study of branching heuristics through the lens of global learning rate. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, 13–19 July 2018, Stockholm, Sweden, pp. 5319–5323. ijcai.org (2018). https://doi.org/10.24963/ijcai.2018/745, http://www.ijcai.org/proceedings/2018/

  27. Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search. In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana, May 7–12, 2017. EPiC Series in Computing, vol. 46, pp. 85–105. EasyChair (2017). http://www.easychair.org/publications/paper/340345

  28. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Transact. Comput. 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  29. Mijnders, S., de Wilde, B., Heule, M.: Symbiosis of search and heuristics for random 3-sat. CoRR abs/1402.4455 (2010)

    Google Scholar 

  30. Moritz, P., et al.: Ray: a distributed framework for emerging \(\{\)AI\(\}\) applications. In: 13th USENIX Symposium on Operating Systems Design and Implementation OSDI 18), pp. 561–577 (2018)

    Google Scholar 

  31. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient sat solver. In: Proceedings of the 38th annual Design Automation Conference. pp. 530–535. ACM (2001)

    Google Scholar 

  32. Oh, C.: Between SAT and UNSAT: The fundamental difference in CDCL SAT. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 307–323. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_23

    Chapter  Google Scholar 

  33. Parisotto, E., Mohamed, A.r., Singh, R., Li, L., Zhou, D., Kohli, P.: Neuro-symbolic program synthesis. arXiv preprint arXiv:1611.01855 (2016)

  34. Ryan, L.: Efficient algorithms for clause-learning SAT solvers, Masters thesis (2004)

    Google Scholar 

  35. Schulz, S.: E-A brainiac theorem prover. Ai Communicat. 15(2, 3), 111–126 (2002)

    MATH  Google Scholar 

  36. Schulz, S.: We know (nearly) nothing! but can we learn? In: Reger, G., Traytel, D. (eds.) ARCADE 2017, 1st International Workshop on Automated Reasoning: Challenges, Applications, Directions, Exemplary Achievements, Gothenburg, Sweden, 6th August 2017. EPiC Series in Computing, vol. 51, pp. 29–32. EasyChair (2017). http://www.easychair.org/publications/paper/6kgF

  37. Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a SAT solver from single-bit supervision. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=HJMC_iA5tm

  38. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354–359 (2017)

    Article  Google Scholar 

  39. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101 (2016)

    Article  Google Scholar 

  40. Tammet, T.: Gandalf. J. Autom. Reason. 18(2), 199–204 (1997). https://doi.org/10.1023/A:1005887414560

    Article  Google Scholar 

  41. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - Machine learner for automated reasoning with semantic guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_37

    Chapter  MATH  Google Scholar 

  42. Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for theorem proving by deep graph embedding. In: Advances in Neural Information Processing Systems, pp. 2786–2796 (2017)

    Google Scholar 

  43. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_31

    Chapter  MATH  Google Scholar 

  44. Whalen, D.: Holophrasm: a neural automated theorem prover for higher-order logic. arXiv preprint arXiv:1608.02644 (2016)

  45. Wu, Y., et al.: Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

  46. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008). https://doi.org/10.1613/jair.2490

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We thank Percy Liang, David L. Dill, and Marijn J. H. Heule for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Selsam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Selsam, D., Bjørner, N. (2019). Guiding High-Performance SAT Solvers with Unsat-Core Predictions. In: Janota, M., Lynce, I. (eds) Theory and Applications of Satisfiability Testing – SAT 2019. SAT 2019. Lecture Notes in Computer Science(), vol 11628. Springer, Cham. https://doi.org/10.1007/978-3-030-24258-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24258-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24257-2

  • Online ISBN: 978-3-030-24258-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics