Abstract
This paper reports on the refinement of the algorithm for measuring terminological difference between text datasets (THD). This baseline THD algorithm, developed in the OntoElect project, used exact string matches for term comparison. In this work, it has been refined by the use of appropriately selected string similarity measures (SSM) for grouping the terms, which look similar as text strings and presumably have similar meanings. To determine rational term similarity thresholds for several chosen SSMs, the measures have been implemented as software functions and evaluated on the developed test set of term pairs in English. Further, the refined algorithm implementation has been evaluated against the baseline THD algorithm. For this evaluation, the bags of terms have been used that had been extracted from the three different document collections of scientific papers, belonging to different subject domains. The experiment revealed that the use of the refined THD algorithm, compared to the baseline, resulted in quicker terminological saturation on more compact sets of source documents, though at an expense of a noticeably higher computation time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This paper is a refined and extended version of [1].
- 2.
- 3.
In this context, we do not distinguish a method and a measure. A method is understood as a way to implement the corresponding measure function.
- 4.
It is expected that Cosine measure, being based on the same principle as Jaccard, is not better than Jaccard in terms of performance, though takes more time to be computed.
- 5.
The test set and computed term similarity values are publicly available at https://github.com/OntoElect/Data/blob/master/STG/Test-Set.xls.
- 6.
The baseline THD algorithm is implemented in Python and is publicly available at https://github.com/OntoElect/Code/tree/master/THD.
- 7.
The functions for all the four selected SSMs have been implemented in Python 3.0 and return real values within [0, 1]. These functions are publicly available at: https://github.com/OntoElect/Code/tree/master/STG/core/methods.
- 8.
- 9.
- 10.
- 11.
https://github.com/OntoElect/Experiments/tree/master/STG. File names are {TIME, DMKD-300, DAC-cleaned}-Results-Alltogether-{min, ave, ave2, max, 1}-th.xlsx.
- 12.
These results could be accessed at https://github.com/OntoElect/Experiments/tree/master/STG. File names are {TIME, DMKD-300, DAC-cleaned}-Results-Alltogether-1-th.xlsx.
- 13.
The rank value is the sum of all ranks for a method within a particular threshold in Table 6. The highest rank value indicates the lowest performance. For case (a) it equals to 12, which is for Sørensen-Dice at Min threshold. For case (b) it equals to 4.
- 14.
Which should be so as the baseline THD does not group terms. Hence, any alternative method that does similar terms grouping retains less significant terms.
References
Chugunenko, A., Kosa, V., Popov, R., Chaves-Fraga, D., Ermolayev, V.: Refining terminological saturation using string similarity measures. In: Ermolayev, V., et al. (eds.) Proceedings of the ICTERI 2018. Volume I: Main Conference, Kyiv, Ukraine, 14–17 May 2018, vol. 2105, pp. 3–18. CEUR-WS, online
Tatarintseva, O., Ermolayev, V., Keller, B., Matzke, W.-E.: Quantifying ontology fitness in ontoelect using saturation- and vote-based metrics. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G. (eds.) ICTERI 2013. CCIS, vol. 412, pp. 136–162. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03998-5_8
Ermolayev, V.: OntoElecting requirements for domain ontologies. The case of time domain. EMISA Int. J. Concept. Model. 13(Sp. Issue), 86–109 (2018)
Fahmi, I., Bouma, G., van der Plas, L.: Improving statistical method using known terms for automatic term extraction. In: Computational Linguistics in the Netherlands, CLIN 17 (2007)
Wermter, J., Hahn, U.: Finding new terminology in very large corpora. In: Clark, P., Schreiber, G. (eds.) Proceedings of the 3rd International Conference on Knowledge Capture, K-CAP 2005, pp. 137–144. ACM, Banff (2005)
Zhang, Z., Iria, J., Brewster, C., Ciravegna, F.: A comparative evaluation of term recognition algorithms. In: Proceedings of the 6th International Conference on Language Resources and Evaluation, LREC 2008, Marrakech, Morocco (2008)
Daille, B.: Study and implementation of combined techniques for automatic extraction of terminology. In: Klavans, J., Resnik, P. (eds.) The Balancing Act: Combining Symbolic and Statistical Approaches to Language, pp. 49–66. The MIT Press, Cambridge (1996)
Caraballo, S.A., Charniak, E.: Determining the specificity of nouns from text. In: Proceedings of the 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, pp. 63–70 (1999)
Astrakhantsev, N.: ATR4S: toolkit with state-of-the-art automatic terms recognition methods in scala. arXiv preprint arXiv:1611.07804 (2016)
Medelyan, O., Witten, I.H.: Thesaurus based automatic keyphrase indexing. In: Marchionini, G., Nelson, M.L., Marshall, C.C. (eds.) Proceedings of the ACM/IEEE Joint Conf on Digital Libraries, JCDL 2006, pp. 296–297. ACM, Chapel Hill (2006)
Ahmad, K., Gillam, L., Tostevin, L.: University of surrey participation in TREC8: weirdness indexing for logical document extrapolation and retrieval (WILDER). In: Proceedings of the 8th Text Retrieval Conference, TREC-8 (1999)
Sclano, F., Velardi, P.: TermExtractor: a web application to learn the common terminology of interest groups and research communities. In: Proceedings of the 9th Conference on Terminology and Artificial Intelligence, TIA 2007, Sophia Antipolis, France (2007)
Frantzi, K.T., Ananiadou, S.: The C/NC value domain independent method for multi-word term extraction. J. Nat. Lang. Proc. 6(3), 145–180 (1999)
Kozakov, L., Park, Y., Fin, T., Drissi, Y., Doganata, Y., Cofino, T.: Glossary extraction and utilization in the information search and delivery system for IBM Technical Support. IBM Syst. J. 43(3), 546–563 (2004)
Astrakhantsev, N.: Methods and software for terminology extraction from domain-specific text collection. Ph.D. thesis, Institute for System Programming of Russian Academy of Sciences (2015)
Bordea, G., Buitelaar, P., Polajnar, T.: Domain-independent term extraction through domain modelling. In: Proceedings of the 10th International Conference on Terminology and Artificial Intelligence, TIA 2013, Paris, France (2013)
Badenes-Olmedo, C., Redondo-García, J.L., Corcho, O.: Efficient clustering from distributions over topics. In: Proceedings of the K-CAP 2017, Article 17, 8 p. ACM, New York (2017)
Gomaa, W.H., Fahmy, A.A.: A survey of text similarity approaches. Int. J. Comput. Appl. 68(13), 13–18 (2013)
Yu, M., Li, G., Deng, D., Feng, J.: String similarity search and join: a survey. Front. Comput. Sci. 10(3), 399–417 (2016)
Miller, G.A., Beckwith, R., Fellbaum, C.D., Gross, D., Miller, K.: WordNet: an online lexical database. Int. J. Lexicograph. 3(4), 235–244 (1990)
Arnold, M., Ohlebusch, E.: Linear time algorithms for generalizations of the longest common substring problem. Algorithmica 60(4), 806–818 (2011)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)
Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)
Monger, A., Elkan, C.: The field-matching problem: algorithm and applications. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 267–270. AAAI Press (1996)
Jaro, M.A.: Advances in record-linkage methodology as applied to matching the 1985 census of Tampa, Florida. J. Am. Stat. Assoc. 84(406), 414–420 (1989)
Winkler, W.E.: String comparator metrics and enhanced decision rules in the Fellegi-Sunter model of record linkage. In: Proceedings of the Section on Survey Research Methods. ASA, pp. 354–359 (1990)
Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)
Sørensen, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab 5(4), 1–34 (1948)
Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11, 37–50 (1912)
Huang, A.: Similarity measures for text document clustering. In: Proceedings of the 6th New Zealand Computer Science Research Student Conference (NZCSRSC2008), Christchurch, New Zealand, pp. 49–56 (2008)
Singhal, A.: Modern information retrieval: a brief overview. Bull. the IEEE Comput. Soc. Tech. Comm. Data Eng. 24(4), 35–43 (2001)
Lu, J., Lin, C., Wang, W., Li, C., Wang, H.: String similarity measures and joins with synonyms. In: Proceedings of the 2013 ACM SIGMOD International Conference on the Management of Data, pp. 373–384 (2013)
Lee, H., Ng, R.T., Shim, K.: Power-law based estimation of set similarity join size. Proc. VLDB Endow. 2(1), 658–669 (2009)
Tsuruoka, Y., McNaught, J., Tsujii, J., Ananiadou, S.: Learning string similarity measures for gene/protein name dictionary look-up using logistic regression. Bioinformatics 23(20), 2768–2774 (2007)
Qin, J., Wang, W., Lu, Y., Xiao, C., Lin, X.: Efficient exact edit similarity query processing with the asymmetric signature scheme. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, pp. 1033–1044. ACM, New York (2011)
Corcho, O., Gonzalez, R., Badenes, C., Dong, F.: Repository of indexed ROs. Deliverable No. 5.4. Dr Inventor project (2015)
Kosa, V., et al.: Cross-evaluation of automated term extraction tools by measuring terminological saturation. In: Bassiliades, N., et al. (eds.) ICTERI 2017. CCIS, vol. 826, pp. 135–163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76168-8_7
Minkowski, H.: Geometrie der Zahlen. Bibliotheca Mathematica Teubneriana, Band 40 Johnson Reprint Corp., New York-London, 256 pp. (1968). (in German)
Moiseenko, S., Ermolayev, V.: Conceptualizing and formalizing requirements for ontology engineering. In: Antoniou, G., Zholtkevych, G. (eds.) Proceedings of the ICTERI 2018 Ph.D. Symposium, Kyiv, Ukraine, 14–17 May, vol. 2122, pp. 35–44. CEUR-WS (2018, online)
Acknowledgements
The research leading to this publication has been performed in part in cooperation between the Department of Computer Science of Zaporizhzhia National University, the Ontology Engineering Group of the Universidad Politécnica de Madrid, the Applied Probability and Informatics Department at the RUDN University, and Springer-Verlag GmbH. The first author is funded by a PhD grant awarded by Zaporizhzhia National University and the Ministry of Education and Science of Ukraine. The second author is supported by the FPI grant (BES-2017-082511) under the DATOS 4.0: RETOS Y SOLUCIONES - UPM project (TIN2016-78011-C4-4-R) funded by Ministerio de Economía, Industria y Competitividad of Spanish government and EU FEDER funds. The fourth author acknowledges the support of the “RUDN University Program 5-100”. The authors would like to acknowledge the contributions by Alyona Chugunenko and Rodion Popov for their research contributions leading to this publication. In particular, they helped develop the approach for term grouping and implement the software for it. The collection of full text Springer journal papers dealing with Knowledge Management, including DMKD-300, has been provided by Springer-Verlag. The authors would also like to express their gratitude to anonymous reviewers whose comments and suggestions helped improve the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kosa, V., Chaves-Fraga, D., Keberle, N., Birukou, A. (2019). Similar Terms Grouping Yields Faster Terminological Saturation. In: Ermolayev, V., Suárez-Figueroa, M., Yakovyna, V., Mayr, H., Nikitchenko, M., Spivakovsky, A. (eds) Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2018. Communications in Computer and Information Science, vol 1007. Springer, Cham. https://doi.org/10.1007/978-3-030-13929-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-13929-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-13928-5
Online ISBN: 978-3-030-13929-2
eBook Packages: Computer ScienceComputer Science (R0)