Abstract
As a contribution for sustainability, electric vehicles (EVs) are seen as one of the most effective influences in the transport sector. As complement to the challenges that entails the EVs integration into the grid considering the bidirectional operation (grid-to-vehicle and vehicle-to-grid), there are new concepts associated with the EV operation integrating various benefits for smart homes. In this sense, this paper proposes an improved voltage control of the EV operating as uninterruptible power supply (UPS) in smart homes. With the EV plugged-in into the smart home, it can act as an off-line UPS protecting the electrical appliances from power grid outages. Throughout the paper, the foremost advantages of the proposed voltage control strategy are comprehensively emphasized, establishing a comparison with the classical approach. Aiming to offer a sinusoidal voltage for linear and nonlinear electrical appliances, a pulse-width modulation with a multi-loop control scheme is used. A Kalman filter is used for decreasing significantly the time of detecting power outages and, consequently, the transition for the UPS mode. The experimental validation was executed with a bidirectional charger containing a double stage power conversion (an ac-dc interfacing the grid-side and a dc-dc interfacing the batteries-side) and a digital stage. The computer simulations and the acquired experimental results validate the proposed strategy in different conditions of operation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Monteiro, V., Ferreira, J.C., Meléndez, A.A.N., Afonso, J.L.: Electric vehicles on-board battery charger for the future smart grids. In: Camarinha-Matos, L.M., Tomic, S., Graça, P. (eds.) DoCEIS 2013. IAICT, vol. 394, pp. 351–358. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37291-9_38
Monteiro, V., Gonçalves, H., Afonso, J.L.: Impact of electric vehicles on power quality in a smart grid context. In: IEEE EPQU International Conference on Electrical Power Quality and Utilisation, pp. 1–6, October 2011
Ferreira, J.C., da Silva, A.R., Monteiro, V., Afonso, J.L.: Collaborative broker for distributed energy resources. In: Madureira, A., Reis, C., Marques, V. (eds.) Computational Intelligence and Decision Making. ISCA, vol. 61, pp. 365–376. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-007-4722-7_34
Nguyen, V.L., Tran-Quoc, T., Bacha, S., Nguyen, B.: Charging strategies to minimize the peak load for an electric vehicle fleet. In: IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, pp. 3522–3528. IEEE, October 2014
Wang, Y., Sheikh, O., Hu, B., Chu, C.-C., Gadh, R.: Integration of V2H/V2G hybrid system for demand response in distribution network. In: 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 812–817. IEEE, November 2014
Lopes, J.A.P., Soares, F.J., Almeida, P.M.R.: Integration of electric vehicles in the electric power system. Proc. IEEE 99(1), 168–183 (2011)
Green, R.C., Wang, L., Alam, M.: The impact of plug-in hybrid electric vehicles on distribution networks: a review and outlook. In: IEEE PES General Meeting, vol. 15, no. 1, pp. 1–8. IEEE, July 2010
Zhao, J.H., Wen, F., Dong, Z.Y., Xue, Y., Wong, K.P.: Optimal dispatch of electric vehicles and wind power using enhanced particle swarm optimization. IEEE Trans. Ind. Inform. 8(4), 889–899 (2012)
Vithayasrichareon, P., Mills, G., MacGill, I.F.: Impact of electric vehicles and solar PV on future generation portfolio investment. IEEE Trans. Sustain. Energy 6(3), 899–908 (2015)
Van Roy, J., Leemput, N., Geth, F., Büscher, J., Salenbien, R., Driesen, J.: Electric vehicle charging in an office building microgrid with distributed energy resources. IEEE Trans. Sustain. Energy 5(4), 1389–1396 (2014)
Gouveia, C., et al.: Experimental validation of smart distribution grids: development of a microgrid and electric mobility laboratory. Elsevier Electr. Power Energy Syst. 78, 765–775 (2016)
Zhang, M., Chen, J.: The energy management and optimized operation of electric vehicles based on microgrid. IEEE Trans. Power Deliv. 29(3), 1427–1435 (2014)
Jin, C., Tang, J., Ghosh, P.: Optimizing electric vehicle charging: a customer’s perspective. IEEE Trans. Veh. Technol. 62(7), 2919–2927 (2013)
Kisacikoglu, M.C., Ozpineci, B., Tolbert, L.M.: EV/PHEV bidirectional charger assessment for V2G reactive power operation. IEEE Trans. Power Electron. 28(12), 5717–5727 (2013)
Galus, M.D., Vayá, M.G., Krause, T., Andersson, G.: The role of electric vehicles in smart grids. Interdiscip. Rev.: Energy Environ. 2, 384–400 (2013)
Gungor, V.C., et al.: Smart grid and smart homes - key players and pilot projects. IEEE Ind. Electron. Mag. 6, 18–34 (2012)
Monteiro, V., Pinto, J.G., Afonso, J.L.: Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes. IEEE Trans. Veh. Technol. 65(3), 1007–1020 (2016)
Boynuegri, A.R., Uzunoglu, M., Erdinc, O., Gokalp, E.: A new perspective in grid connection of electric vehicles: different operating modes for elimination of energy quality problems. Elsevier Appl. Energy 132, 435–451 (2014)
Tushar, M.H.K., Assi, C., Maier, M., Uddin, M.F.: Smart microgrids: optimal joint scheduling for electric vehicles and home appliances. IEEE Trans. Smart Grid 5(1), 239–250 (2014)
Monteiro, V., Carmo, J.P., Pinto, J.G., Afonso, J.L.: A flexible infrastructure for dynamic power control of electric vehicle battery chargers. IEEE Trans. Veh. Technol. 65(6), 4535–4547 (2016)
Pinto, J.G., et al.: Bidirectional battery charger with grid to vehicle, vehicle to grid and vehicle to home technologies. In: IEEE IECON Industrial Electronics Conference, Vienna Austria, pp. 5934–5939, November 2013
Monteiro, V., Exposto, B., Ferreira, J.C., Afonso, J.L.: Improved vehicle-to-home (iV2H) operation mode: experimental analysis of the electric vehicle as off-line UPS. IEEE Trans. Smart Grid 8(6), 2702–2711 (2017)
Monteiro, V., Ferreira, J.C., Meléndez, A.A.N., Afonso, J.L.: Model predictive control applied to an improved five-level bidirectional converter. IEEE Trans. Ind. Electron. 63(9), 5879–5890 (2016)
Monteiro, V., Ferreira, J.C., Meléndez, A.A.N., Couto, C., Afonso, J.L.: Experimental validation of a novel architecture based on a dual-stage converter for off-board fast battery chargers of electric vehicles. IEEE Trans. Veh. Tech. 67(2), 1000–1011 (2018)
Monteiro, V., Meléndez, A.A.N., Couto, C., Afonso, J.L.: Model predictive current control of a proposed single-switch three-level active rectifier applied to EV battery chargers. In: IEEE IECON Industrial Electronics Conference, Florence, Italy, pp. 1365–1370, October 2016
Monteiro, V., Ferreira, J.C., Pedrosa, D., Sepúlveda, M.J., Aparício Fernandes, J.C., Afonso, J.L.: Comprehensive analysis and comparison of digital current control techniques for active rectifiers. In: Garrido, P., Soares, F., Moreira, A. (eds.) CONTROLO 2016. LNEE, vol. 402, pp. 655–666. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-43671-5_55
Acknowledgment
This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013. This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia, within project SAICTPAC/0004/2015 – POCI – 01–0145–FEDER–016434. This work is part of the FCT project 0302836 NORTE-01-0145-FEDER-030283.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Monteiro, V., Catalão, J.P.S., Sousa, T.J.C., Pinto, J.G., Mezaroba, M., Afonso, J.L. (2019). Improved Voltage Control of the Electric Vehicle Operating as UPS in Smart Homes. In: Afonso, J., Monteiro, V., Pinto, J. (eds) Green Energy and Networking. GreeNets 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 269. Springer, Cham. https://doi.org/10.1007/978-3-030-12950-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-12950-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12949-1
Online ISBN: 978-3-030-12950-7
eBook Packages: Computer ScienceComputer Science (R0)