Nothing Special   »   [go: up one dir, main page]

Skip to main content

Structure-Preserving Certificateless Encryption and Its Application

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2019 (CT-RSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11405))

Included in the following conference series:

Abstract

Certificateless encryption (CLE) combines the advantages of public-key encryption (PKE) and identity-based encryption (IBE) by removing the certificate management of PKE and the key escrow problem of IBE. In this paper, we propose structure-preserving CLE schemes. Structure preservation enables efficient non-interactive proof of certain ciphertext properties, thus supporting efficient modular constructions of advanced cryptographic protocols with a simple design.

As an illustration, we propose a structure-preserving group signature scheme with certified limited (CL) opening from structure-preserving CLE. CL opening allows a master certifier to certify openers. The opener who is the designated one for a group signature can open it (i.e., revoke its anonymity). Neither the certifier nor any non-designated openers can perform the opening. The structure-preserving property of our scheme can also hide who is the designated opener among a list of possibilities.

S. S. M. Chow—Supported by General Research Funds (CUHK 14210217) of the Research Grants Council, Hong Kong.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the partially structure-preserving IBE scheme [25], this represents the bit-length of the identity. In our scheme, \({\mathsf {ID}}\) is a group element, so l belongs to \(\mathsf {poly}(\lambda )\).

References

  1. Abe, M., Chow, S.S.M., Haralambiev, K., Ohkubo, M.: Double-trapdoor anonymous tags for traceable signatures. Int. J. Inf. Secur. 12(1), 19–31 (2013)

    Article  Google Scholar 

  2. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_20

    Chapter  Google Scholar 

  3. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_12

    Chapter  Google Scholar 

  4. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_37

    Chapter  MATH  Google Scholar 

  5. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_29

    Chapter  Google Scholar 

  6. Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless public key encryption without pairing. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 134–148. Springer, Heidelberg (2005). https://doi.org/10.1007/11556992_10

    Chapter  Google Scholar 

  7. Barbosa, M., Farshim, P.: Relations among notions of complete non-malleability: indistinguishability characterisation and efficient construction without random oracles. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 145–163. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14081-5_10

    Chapter  MATH  Google Scholar 

  8. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38

    Chapter  Google Scholar 

  9. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

    Article  MathSciNet  Google Scholar 

  10. Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure preserving CCA secure encryption and applications. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 89–106. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_5

    Chapter  Google Scholar 

  11. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_33

    Chapter  Google Scholar 

  12. Chow, S.S.M.: Certificateless encryption. In: Identity-Based Cryptography. Cryptology and Information Security Series, vol. 2, pp. 135–155. IOS Press (2008)

    Google Scholar 

  13. Chow, S.S.M.: Real traceable signatures. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 92–107. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7_6

    Chapter  Google Scholar 

  14. Chow, S.S.M., Franklin, M.K., Zhang, H.: Practical dual-receiver encryption - soundness, complete non-malleability, and applications. In: The Cryptographer’s Track at the RSA Conference (CT-RSA), pp. 85–105 (2014)

    Chapter  Google Scholar 

  15. Chow, S.S.M., Roth, V., Rieffel, E.G.: General certificateless encryption and timed-release encryption. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 126–143. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3_9

    Chapter  MATH  Google Scholar 

  16. Chow, S.S.M., Susilo, W., Yuen, T.H.: Escrowed linkability of ring signatures and its applications. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 175–192. Springer, Heidelberg (2006). https://doi.org/10.1007/11958239_12

    Chapter  Google Scholar 

  17. Chow, S.S.M., Zhang, H., Zhang, T.: Real hidden identity-based signatures. In: Financial Cryptography and Data Security (FC), pp. 21–38 (2017)

    Chapter  Google Scholar 

  18. Dent, A.W.: A brief introduction to certificateless encryption schemes and their infrastructures. In: Martinelli, F., Preneel, B. (eds.) EuroPKI 2009. LNCS, vol. 6391, pp. 1–16. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16441-5_1

    Chapter  Google Scholar 

  19. Dent, A.W., Libert, B., Paterson, K.G.: Certificateless encryption schemes strongly secure in the standard model. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 344–359. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1_20

    Chapter  Google Scholar 

  20. Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_42

    Chapter  Google Scholar 

  21. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. SIAM J. Comput. 41(5), 1193–1232 (2012)

    Article  MathSciNet  Google Scholar 

  22. Kasamatsu, K., Matsuda, T., Emura, K., Attrapadung, N., Hanaoka, G., Imai, H.: Time-specific encryption from forward-secure encryption. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 184–204. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_11

    Chapter  Google Scholar 

  23. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_34

    Chapter  Google Scholar 

  24. Kiayias, A., Zhou, H.: Hidden identity-based signatures. IET Inf. Secur. 3(3), 119–127 (2009)

    Article  Google Scholar 

  25. Libert, B., Joye, M.: Group signatures with message-dependent opening in the standard model. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 286–306. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_15

    Chapter  MATH  Google Scholar 

  26. Libert, B., Mouhartem, F., Nguyen, K.: A lattice-based group signature scheme with message-dependent opening. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 137–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_8

    Chapter  Google Scholar 

  27. Libert, B., Peters, T., Qian, C.: Structure-preserving chosen-ciphertext security with shorter verifiable ciphertexts. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 247–276. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8_11

    Chapter  Google Scholar 

  28. Ohara, K., Sakai, Y., Emura, K., Hanaoka, G.: A group signature scheme with unbounded message-dependent opening. In: ACM SIGSAC Symposium on Information, Computer and Communications Security (AsiaCCS), pp. 517–522. ACM (2013)

    Google Scholar 

  29. Paterson, K.G., Quaglia, E.A.: Time-specific encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 1–16. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_1

    Chapter  Google Scholar 

  30. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group signatures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-4_18

    Chapter  Google Scholar 

  31. Sun, Y., Zhang, F., Baek, J.: Strongly secure certificateless public key encryption without pairing. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 194–208. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76969-9_13

    Chapter  Google Scholar 

  32. Tsang, P.P., Chow, S.S.M., Smith, S.W.: Batch pairing delegation. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 74–90. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75651-4_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherman S. M. Chow .

Editor information

Editors and Affiliations

A Towards Removing \({\mathbb {G}}_{T}\) Elements from the Ciphertext

A Towards Removing \({\mathbb {G}}_{T}\) Elements from the Ciphertext

Recall that in our basic scheme (Sect. 4.2)

$$K = \{e(W_{2}, \tilde{R})e(U, \tilde{R}) / e(W_{1}, h) \}^{x} \{e({\mathsf {ID}}, \tilde{V}_{1})e(D_{\alpha }, \tilde{V}_{2})/e(g, h) \}^{y} / e(D_{\alpha }, h)^{z}.$$

We include the following terms in the ciphertext such that \(\prod _{i = 1}^{4}\{e(C_i, \tilde{C}_i)\} = K\).

$$\begin{aligned} C_1&= ((W_2\cdot U)^x)^{r_1},&\tilde{C}_1&= \tilde{R}^{1/r_1},&C_2&= ({\mathsf {ID}}^y)^{r_2},&\tilde{C}_2&= \tilde{V}_1^{1/r_2},\\ C_3&= ({D_\alpha }^y)^{r_3},&\tilde{C}_3&= \tilde{V}_2^{1/r_3},&C_4&= ({W_1}^x/g^y/{D_\alpha }^z)^{r_4},&\tilde{C}_4&= h^{1/r_4}. \end{aligned}$$

K can be recovered by \(e(C_{g}, \tilde{S})e(T, C_{R})e(C_{z}, \tilde{D}_{\alpha })\) as in the decryption algorithm.

The idea of encryption/decryption is still about encoding/recovering the bits \(\{\tau _{j}\}\) in \(C_{0} = M \cdot \prod _{j = 1}^{l}{G_{j}^{\tau _{j}}}\) (Sect. 4.3). Roughly, the trick [25] has two steps. First, we replicate K into l versions by different randomness. Second, we replicate the master public key and the private key into two versions based on different generators. To encode \(\tau _j = 0\), both encryption and decryption should use the first version of the corresponding key. Similarly, \(\tau _j = 1\) takes the second version.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, T., Wu, H., Chow, S.S.M. (2019). Structure-Preserving Certificateless Encryption and Its Application. In: Matsui, M. (eds) Topics in Cryptology – CT-RSA 2019. CT-RSA 2019. Lecture Notes in Computer Science(), vol 11405. Springer, Cham. https://doi.org/10.1007/978-3-030-12612-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12612-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12611-7

  • Online ISBN: 978-3-030-12612-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics