Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Hierarchical Secret Sharing Scheme Based on Information Dispersal Techniques

  • Conference paper
  • First Online:
Information Security and Cryptology – ICISC 2018 (ICISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11396))

Included in the following conference series:

Abstract

Hierarchical secret sharing schemes are known for how they share a secret among a group of participants partitioned into levels. In this study, we consider using a systematic information dispersal algorithm (IDA). We then apply the general concept of hierarchy to the generator matrix used in a systematic IDA and propose an ideal hierarchical secret sharing scheme applicable at any level. For perfect privacy, secret sharing schemes depend on the fact that an adversary can only pool at most \(k-1\) shares. However, in our hierarchical scheme, we need to consider an adversary can also pool k or more shares of lower-level participants. Moreover, considering practical use, we present our evaluation of our software implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  2. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  3. Tassa, T.: Hierarchical threshold secret sharing. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 473–490. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_26

    Chapter  Google Scholar 

  4. Tassa, T.: Hierarchical threshold secret sharing. J. Cryptol. 20(2), 237–264 (2007)

    Article  MathSciNet  Google Scholar 

  5. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast \((3, n)\)-threshold secret sharing scheme using Exclusive-OR operations. IEICE Trans. Fundam. E91-A(1), 127–138 (2008)

    Google Scholar 

  6. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: On a fast \((k, n)\)-threshold secret sharing scheme. IEICE Trans. Fundam. E91-A(9), 2365–2378 (2008)

    Google Scholar 

  7. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A new (k,n)-threshold secret sharing scheme and its extension. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 455–470. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85886-7_31

    Chapter  Google Scholar 

  8. Kurihara, J., Uyematsu, T.: A novel realization of threshold schemes over binary field extensions. IEICE Trans. Fundam. E94-A(6), 1375–1380 (2011)

    Article  Google Scholar 

  9. Feng, G.-L., Deng, R.-H., Bao, F.: Packet-loss resilient coding scheme with only XOR operations. IEE Proc. Commun. 151(4), 322–328 (2004)

    Article  Google Scholar 

  10. Blömer, J., Kalfane, M., Karp, R., Karpinski, M., Luby, M., Zuckerman, D.: An XOR-based erasure-resilient coding scheme. ICSI Technical report TR-95-048 (1995)

    Google Scholar 

  11. Chen, L., Laing, T.M., Martin, K.M.: Efficient, XOR-based, ideal \((t,n)-\)threshold schemes. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_28

    Chapter  Google Scholar 

  12. Yamamoto, H.: On secret sharing system using \((k, L, n)\) threshold scheme. IEICE Trans. Fundam. (Jpn. Ed.) J68-A(9), 945–952 (1985). Secret sharing system using \((k, L, n)\) threshold scheme. Electron. Commun. Jpn. (Engl. Ed.) Part I 69(9), 46–54 (1986)

    Google Scholar 

  13. Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_20

    Chapter  Google Scholar 

  14. Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_12

    Chapter  Google Scholar 

  15. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast \((k, L, n)\)-threshold ramp secret sharing scheme. IEICE Trans. Fundam. E92-A(8), 1808–1821 (2009)

    Google Scholar 

  16. Resch, J.K., Plank, J.S.: AONT-RS: blending security and performance in dispersed storage systems. In: 9th USENIX Conference on File and Storage Technologies, pp. 191–202 (2011)

    Google Scholar 

  17. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault tolerance. J. ACM 36(2), 335–348 (1989)

    Article  MathSciNet  Google Scholar 

  18. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052348

    Chapter  MATH  Google Scholar 

  19. Béguin, P., Cresti, A.: General short computational secret sharing schemes. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 194–208. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-49264-X_16

    Chapter  Google Scholar 

  20. Selçuk, A.A., Kaşkaloğlu, K., Özbudak, F.: On hierarchical threshold secret sharing. IACR Cryptology ePrint Archive 2009, 450 (2009)

    Google Scholar 

  21. Simmons, G.J.: How to (really) share a secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_30

    Chapter  Google Scholar 

  22. Brickell, E.F.: Some ideal secret sharing schemes. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_45

    Chapter  Google Scholar 

  23. Castiglione, A., De Santis, A., Masucci, B.: Hierarchical and shared key assignment. In: NBiS-2014, pp. 263–270 (2014)

    Google Scholar 

  24. Castiglione, A., et al.: Hierarchical and shared access control. IEEE Trans. Inf. Forensics Secur. 11(4), 850–865 (2016)

    Google Scholar 

  25. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7_2

    Chapter  Google Scholar 

  26. Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of secret sharing schemes. TCS 154, 283–306 (1996)

    Article  MathSciNet  Google Scholar 

  27. Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of secret sharing schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 148–167. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_11

    Chapter  Google Scholar 

  28. Plank, J.S., Ding, Y.: Note: correction to the 1997 tutorial on reed-solomon coding. Softw.-Pract. Exp. 35(2), 189–194 (2005)

    Article  Google Scholar 

  29. Shima, K., Doi, H.: A hierarchical secret sharing scheme over finite fields of characteristic 2. J. Inf. Process. 25, 875–883 (2017)

    Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for their helpful comments. This work was supported by JSPS KAKENHI Grant Number JP18K11306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Shima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shima, K., Doi, H. (2019). A Hierarchical Secret Sharing Scheme Based on Information Dispersal Techniques. In: Lee, K. (eds) Information Security and Cryptology – ICISC 2018. ICISC 2018. Lecture Notes in Computer Science(), vol 11396. Springer, Cham. https://doi.org/10.1007/978-3-030-12146-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12146-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12145-7

  • Online ISBN: 978-3-030-12146-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics