Nothing Special   »   [go: up one dir, main page]

Skip to main content

Whale Optimization Algorithm: Theory, Literature Review, and Application in Designing Photonic Crystal Filters

  • Chapter
  • First Online:
Nature-Inspired Optimizers

Part of the book series: Studies in Computational Intelligence ((SCI,volume 811))

Abstract

This chapter presents and analyzes the Whale Optimization Algorithm. The inspiration of this algorithm is first discussed in details, which is the bubble-net foraging behaviour of humpback whales in nature. The mathematical models of this algorithm is then discussed. Due to the large number of applications, a brief literature review of WOA is provided including recent works on the algorithms itself and its applications. The chapter also tests the performance of WOA on several test functions and a real case study in the field of photonic crystal filter. The qualitative and quantitative results show that merits of this algorithm for solving a wide range of challenging problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kennedy, J. (2011). Particle swarm optimization. In Encyclopedia of machine learning (pp. 760–766). Boston, MA: Springer.

    Google Scholar 

  2. Dorigo, M., & Birattari, M. (2011). Ant colony optimization. In Encyclopedia of machine learning (pp. 36–39). Boston, MA: Springer.

    Google Scholar 

  3. Tan, K. C., Chiam, S. C., Mamun, A. A., & Goh, C. K. (2009). Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. European Journal of Operational Research, 197(2), 701–713.

    MATH  Google Scholar 

  4. Chitsaz, H., & Aminisharifabad, M. (2015). Exact learning of rna energy parameters from structure. Journal of Computational Biology, 22(6), 463–473.

    MathSciNet  Google Scholar 

  5. Aminisharifabad, M., Yang, Q. & Wu, X. (2018). A penalized autologistic regression with application for modeling the microstructure of dual-phase high strength steel. Journal of Quality Technology (in-press).

    Google Scholar 

  6. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Google Scholar 

  7. Oliva, D., El Aziz, M. A., & Hassanien, A. E. (2017). Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Applied Energy, 200, 141–154.

    Google Scholar 

  8. Sun, W. Z., & Wang, J. S. (2017). Elman neural network soft-sensor model of conversion velocity in polymerization process optimized by chaos whale optimization algorithm. IEEE Access, 5, 13062–13076.

    Google Scholar 

  9. Kaur, G., & Arora, S. (2018). Chaotic whale optimization algorithm. Journal of Computational Design and Engineering.

    Google Scholar 

  10. Prasad, D., Mukherjee, A., & Mukherjee, V. (2017). Transient stability constrained optimal power flow using chaotic whale optimization algorithm. In Handbook of neural computation (pp. 311–332).

    Google Scholar 

  11. Trivedi, I. N., Pradeep, J., Narottam, J., Arvind, K., & Dilip, L. (2016). Novel adaptive whale optimization algorithm for global optimization. Indian Journal of Science and Technology, 9(38).

    Google Scholar 

  12. Hu, H., Bai, Y., & Xu, T. (2016). A whale optimization algorithm with inertia weight. WSEAS Transactions on Computers, 15, 319–326.

    Google Scholar 

  13. Emary, E., Zawbaa, H. M., & Salam, M. A. (2017). A proposed whale search algorithm with adaptive random walk. In 2017 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP) (pp. 171–177). IEEE.

    Google Scholar 

  14. Elaziz, M. A., & Oliva, D. (2018). Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. Energy Conversion and Management, 171, 1843–1859.

    Google Scholar 

  15. Ling, Y., Zhou, Y., & Luo, Q. (2017). Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access, 5(99), 6168–6186.

    Google Scholar 

  16. Abdel-Basset, M., Abdle-Fatah, L., & Sangaiah, A. K. (2018). An improved Lévy based whale optimization algorithm for bandwidth-efficient virtual machine placement in cloud computing environment. Cluster Computing, 1–16.

    Google Scholar 

  17. Sauber, A. M., Nasef, M. M., Houssein, E. H., & Hassanien, A. E. (2018). Parallel whale optimization algorithm for solving constrained and unconstrained optimization problems. arXiv:1807.09217.

  18. Eid, H. F. (2018). Binary whale optimisation: an effective swarm algorithm for feature selection. International Journal of Metaheuristics, 7(1), 67–79.

    Google Scholar 

  19. Hussien, A. G., Houssein, E. H., & Hassanien, A. E. (2017, December). A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection. In 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS) (pp. 166–172). IEEE.

    Google Scholar 

  20. Reddy K, S., Panwar, L., Panigrahi, B. K., & Kumar, R. (2018). Binary whale optimization algorithm: A new metaheuristic approach for profit-based unit commitment problems in competitive electricity markets. Engineering Optimization, 1–21.

    Google Scholar 

  21. Hussien, A. G., Hassanien, A. E., Houssein, E. H., Bhattacharyya, S., & Amin, M. (2019). S-shaped binary whale optimization algorithm for feature selection. In Recent trends in signal and image processing (pp. 79–87). Singapore: Springer.

    Google Scholar 

  22. Wang, J., Du, P., Niu, T., & Yang, W. (2017). A novel hybrid system based on a new proposed algorithm-multi-objective whale optimization algorithm for wind speed forecasting. Applied Energy, 208, 344–360.

    Google Scholar 

  23. El Aziz, M. A., Ewees, A. A., & Hassanien, A. E. (2018). Multi-objective whale optimization algorithm for content-based image retrieval. Multimedia Tools and Applications, 1–38.

    Google Scholar 

  24. El Aziz, M. A., Ewees, A. A., Hassanien, A. E., Mudhsh, M., & Xiong, S. (2018). Multi-objective whale optimization algorithm for multilevel thresholding segmentation. In Advances in soft computing and machine learning in image processing (pp. 23–39). Cham: Springer.

    Google Scholar 

  25. Jangir, P., & Jangir, N. (2017). Non-dominated sorting whale optimization algorithm (NSWOA): A multi-objective optimization algorithm for solving engineering design problems. Global Journal of Research In Engineering.

    Google Scholar 

  26. Xu, Z., Yu, Y., Yachi, H., Ji, J., Todo, Y., & Gao, S. (2018). A novel memetic whale optimization algorithm for optimization. In International Conference on Swarm Intelligence (pp. 384–396). Cham: Springer.

    Google Scholar 

  27. Trivedi, I. N., Jangir, P., Kumar, A., Jangir, N., & Totlani, R. (2018). A novel hybrid PSOWOA algorithm for global numerical functions optimization. In Advances in Computer and Computational Sciences (pp. 53–60). Singapore: Springer.

    Google Scholar 

  28. Kumar, N., Hussain, I., Singh, B., & Panigrahi, B. K. (2017). MPPT in dynamic condition of partially shaded PV system by using WODE technique. IEEE Transactions on Sustainable Energy, 8(3), 1204–1214.

    Google Scholar 

  29. Jadhav, A. N., & Gomathi, N. (2017). WGC: Hybridization of exponential grey wolf optimizer with whale optimization for data clustering. Alexandria Engineering Journal.

    Google Scholar 

  30. Mohamed, F., AbdelNasser, M., Mahmoud, K., & Kamel, S. (2017). Accurate economic dispatch solution using hybrid whale-wolf optimization method. In 2017 Nineteenth International Middle East Power Systems Conference (MEPCON) (pp. 922–927). IEEE.

    Google Scholar 

  31. Singh, N., & Hachimi, H. (2018). A new hybrid whale optimizer algorithm with mean strategy of grey wolf optimizer for global optimization. Mathematical and Computational Applications, 23(1), 14.

    MathSciNet  MATH  Google Scholar 

  32. Kaveh, A., & Rastegar Moghaddam, M. (2018). A hybrid WOA-CBO algorithm for construction site layout planning problem. Scientia Iranica, 25(3), 1094–1104.

    Google Scholar 

  33. Khalilpourazari, S., & Khalilpourazary, S. (2018). SCWOA: An efficient hybrid algorithm for parameter optimization of multi-pass milling process. Journal of Industrial and Production Engineering, 35(3), 135–147.

    Google Scholar 

  34. Sai, L., & Huajing, F. (2017). A WOA-based algorithm for parameter optimization of support vector regression and its application to condition prognostics. In 2017 36th Chinese Control Conference (CCC) (pp. 7345–7350). IEEE.

    Google Scholar 

  35. Bhesdadiya, R., Jangir, P., Jangir, N., Trivedi, I. N., & Ladumor, D. (2016). Training multi-layer perceptron in neural network using whale optimization algorithm. Indian Journal of Science and Technology, 9(19), 28–36.

    Google Scholar 

  36. Lai, K. H., Zainuddin, Z., & Ong, P. (2017). A study on the performance comparison of metaheuristic algorithms on the learning of neural networks. In AIP Conference Proceedings (Vol. 1870, No. 1, p. 040039). AIP Publishing.

    Google Scholar 

  37. Yadav, H., Lithore, U., & Agrawal, N. (2017). An enhancement of whale optimization algorithm using ANN for routing optimization in Ad-hoc network. International Journal of Advanced Technology and Engineering Exploration, 4(36), 161–167.

    Google Scholar 

  38. Chen, Y., Vepa, R., & Shaheed, M. H. (2018). Enhanced and speedy energy extraction from a scaled-up pressure retarded osmosis process with a whale optimization based maximum power point tracking. Energy, 153, 618–627.

    Google Scholar 

  39. Mehne, H. H., & Mirjalili, S. (2018). A parallel numerical method for solving optimal control problems based on whale optimization algorithm. Knowledge-Based Systems, 151, 114–123.

    Google Scholar 

  40. Saha, A., & Saikia, L. C. (2018). Performance analysis of combination of ultra-capacitor and superconducting magnetic energy storage in a thermal-gas AGC system with utilization of whale optimization algorithm optimized cascade controller. Journal of Renewable and Sustainable Energy, 10(1), 014103.

    Google Scholar 

  41. Algabalawy, M. A., Abdelaziz, A. Y., Mekhamer, S. F., & Aleem, S. H. A. (2018). Considerations on optimal design of hybrid power generation systems using whale and sine cosine optimization algorithms. Journal of Electrical Systems and Information Technology.

    Google Scholar 

  42. Hasanien, H. M. (2018). Performance improvement of photovoltaic power systems using an optimal control strategy based on whale optimization algorithm. Electric Power Systems Research, 157, 168–176.

    Google Scholar 

  43. Sarkar, P., Laskar, N. M., Nath, S., Baishnab, K. L., & Chanda, S. (2018). Offset voltage minimization based circuit sizing of CMOS operational amplifier using whale optimization algorithm. Journal of Information and Optimization Sciences, 39(1), 83–98.

    Google Scholar 

  44. Parambanchary, D., & Rao, V. M. WOA-NN: a decision algorithm for vertical handover in heterogeneous networks. Wireless Networks 1–16.

    Google Scholar 

  45. Jadhav, A. R., & Shankar, T. (2017). Whale optimization based energy-efficient cluster head selection algorithm for wireless sensor networks. arXiv:1711.09389.

  46. Kumawat, I. R., Nanda, S. J., & Maddila, R. K. (2018). Positioning LED panel for uniform illuminance in indoor VLC system using whale optimization. In Optical and Wireless Technologies (pp. 131–139). Singapore: Springer.

    Google Scholar 

  47. Alomari, A., Phillips, W., Aslam, N., & Comeau, F. (2018). Swarm intelligence optimization techniques for obstacle-avoidance mobility-assisted localization in wireless sensor networks. IEEE Access, 6, 22368–22385.

    Google Scholar 

  48. Rewadkar, D., & Doye, D. (2018). Multiobjective autoregressive whale optimization for traffic-aware routing in urban VANET. IET Information Security.

    Google Scholar 

  49. Yadav, H., Lilhore, U., & Agrawal, N. (2017). A survey: whale optimization algorithm for route optimization problems. Wireless Communication, 9(5), 105–108.

    Google Scholar 

  50. Rewadkar, D., & Doye, D. (2018). Adaptive-ARW: adaptive autoregressive whale optimization algorithm for traffic-aware routing in urban VANET. International Journal of Computer Sciences and Engineering, 6(2), 303–312.

    Google Scholar 

  51. Sharma, M., & Garg, R. (2017). Energy-aware whale-optmized task scheduler in cloud computing. In 2017 International Conference on Intelligent Sustainable Systems (ICISS) (pp. 121–126). IEEE.

    Google Scholar 

  52. Reddy, G. N., & Kumar, S. P. (2017). Multi objective task scheduling algorithm for cloud computing using whale optimization technique. In International Conference on Next Generation Computing Technologies (pp. 286–297). Singapore: Springer.

    Google Scholar 

  53. Sreenu, K., & Sreelatha, M. (2017). W-Scheduler: whale optimization for task scheduling in cloud computing. Cluster Computing, 1–12.

    Google Scholar 

  54. Mousavirad, S. J., & Ebrahimpour-Komleh, H. (2017). Multilevel image thresholding using entropy of histogram and recently developed population-based metaheuristic algorithms. Evolutionary Intelligence, 10(1–2), 45–75.

    Google Scholar 

  55. Sahlol, A. T., & Hassanien, A. E. (2017). Bio-inspired optimization algorithms for Arabic handwritten characters. In Handbook of research on machine learning innovations and trends (pp. 897–914). IGI Global.

    Google Scholar 

  56. Hassan, G., & Hassanien, A. E. (2018). Retinal fundus vasculature multilevel segmentation using whale optimization algorithm. Signal, Image and Video Processing, 12(2), 263–270.

    Google Scholar 

  57. Hassanien, A. E., Elfattah, M. A., Aboulenin, S., Schaefer, G., Zhu, S. Y., & Korovin, I. (2016). Historic handwritten manuscript binarisation using whale optimisation. In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 003842–003846). IEEE.

    Google Scholar 

  58. Zhang, C., Fu, X., Peng, S., & Wang, Y. (2018). Linear unequally spaced array synthesis for sidelobe suppression with different aperture constraints using whale optimization algorithm. In 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE.

    Google Scholar 

  59. Yuan, P., Guo, C., Zheng, Q., & Ding, J. (2018). Sidelobe suppression with constraint for MIMO radar via chaotic whale optimisation. Electronics Letters, 54(5), 311–313.

    Google Scholar 

  60. Pathak, V. K., & Singh, A. K. (2017). Accuracy control of contactless laser sensor system using whale optimization algorithm and moth-flame optimization. tm-Technisches Messen, 84(11), 734–746.

    Google Scholar 

  61. Reddy, A. S., & Reddy, M. D. (2018). Application of whale optimization algorithm for distribution feeder reconfiguration. Journal on Electrical Engineering, 11(3).

    Google Scholar 

  62. Zhang, C., Fu, X., Ligthart, L. P., Peng, S., & Xie, M. (2018). Synthesis of broadside linear aperiodic arrays with sidelobe suppression and null steering using whale optimization algorithm. IEEE Antennas and Wireless Propagation Letters, 17(2), 347–350.

    Google Scholar 

  63. Yuan, P., Guo, C., Ding, J., & Qu, Y. (2017). Synthesis of nonuniform sparse linear array antenna using whale optimization algorithm. In 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP) (pp. 1–3). IEEE.

    Google Scholar 

  64. Nasiri, J., & Khiyabani, F. M. (2018). A whale optimization algorithm (WOA) approach for clustering. Cogent Mathematics & Statistics, 1483565.

    Google Scholar 

  65. Emmanuel, W. S., & Minija, S. J. (2018). Fuzzy clustering and Whale-based neural network to food recognition and calorie estimation for daily dietary assessment. Sādhanā, 43(5), 78.

    MathSciNet  Google Scholar 

  66. Al-Janabi, T. A., & Al-Raweshidy, H. S. (2017). Efficient whale optimisation algorithm-based SDN clustering for IoT focused on node density. In 2017 16th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net) (pp. 1–6). IEEE.

    Google Scholar 

  67. Osama, S., Darwish, A., Houssein, E. H., Hassanien, A. E., Fahmy, A. A., & Mahrous, A. (2017). Long-term wind speed prediction based on optimized support vector regression. In 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS) (pp. 191–196). IEEE.

    Google Scholar 

  68. Barham, R., & Aljarah, I. (2017). Link Prediction Based on Whale Optimization Algorithm. In 2017 International Conference on New Trends in Computing Sciences (ICTCS) (pp. 55–60). IEEE.

    Google Scholar 

  69. Osama, S., Houssein, E. H., Hassanien, A. E., & Fahmy, A. A. (2017). Forecast of wind speed based on whale optimization algorithm. In Proceedings of the 1st International Conference on Internet of Things and Machine Learning (p. 62). ACM.

    Google Scholar 

  70. Desuky, A. S. (2017). Two enhancement levels for male fertility rate categorization using whale optimization and pegasos algorithms. Australian Journal of Basic and Applied Sciences, 11(7), 78–83.

    Google Scholar 

  71. Sherin, B. M., & Supriya, M. H. (2017). WOA based selection and parameter optimization of SVM kernel function for underwater target classification. International Journal of Advanced Research in Computer Science, 8(3).

    Google Scholar 

  72. Elazab, O. S., Hasanien, H. M., Elgendy, M. A., & Abdeen, A. M. (2017). Whale optimisation algorithm for photovoltaic model identification. The Journal of Engineering, 2017(13), 1906–1911.

    Google Scholar 

  73. Yan, Z., Sha, J., Liu, B., Tian, W., & Lu, J. (2018). An ameliorative whale optimization algorithm for multi-objective optimal allocation of water resources in Handan, China. Water, 10(1), 87.

    Google Scholar 

  74. AlaM, A. Z., Faris, H., & Hassonah, M. A. (2018). Evolving support vector machines using whale optimization algorithm for spam profiles detection on online social networks in different lingual contexts. Knowledge-Based Systems, 153, 91–104.

    Google Scholar 

  75. Hegazy, A. E., Makhlouf, M. A., & El-Tawel, G. S. (2018). Dimensionality reduction using an improved whale optimization algorithm for data classification. International Journal of Modern Education and Computer Science, 10(7), 37.

    Google Scholar 

  76. Zamani, H., & Nadimi-Shahraki, M. H. (2016). Feature selection based on whale optimization algorithm for diseases diagnosis. International Journal of Computer Science and Information Security, 14(9), 1243.

    Google Scholar 

  77. Mafarja, M., & Mirjalili, S. (2018). Whale optimization approaches for wrapper feature selection. Applied Soft Computing, 62, 441–453.

    Google Scholar 

  78. Ruiye, J., Tao, C., Songyan, W., & Ming, Y. (2018, March). Order whale optimization algorithm in rendezvous orbit design. In 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI) (pp. 97–102). IEEE.

    Google Scholar 

  79. Canayaz, M., & Demir, M. (2017). Feature selection with the whale optimization algorithm and artificial neural network. In 2017 International Artificial Intelligence and Data Processing Symposium (IDAP) (pp. 1—5). IEEE.

    Google Scholar 

  80. Sharawi, M., Zawbaa, H. M., & Emary, E. (2017). Feature selection approach based on whale optimization algorithm. In 2017 Ninth International Conference on Advanced Computational Intelligence (ICACI) (pp. 163–168). IEEE.

    Google Scholar 

  81. Yu, Y., Wang, H., Li, N., Su, Z., & Wu, J. (2017). Automatic carrier landing system based on active disturbance rejection control with a novel parameters optimizer. Aerospace Science and Technology, 69, 149–160.

    Google Scholar 

  82. Saidala, R. K., & Devarakonda, N. (2018). Improved whale optimization algorithm case study: Clinical data of anaemic pregnant woman. In Data engineering and intelligent computing (pp. 271–281). Singapore: Springer.

    Google Scholar 

  83. Sayed, G. I., Darwish, A., Hassanien, A. E., & Pan, J. S. (2016). Breast cancer diagnosis approach based on meta-heuristic optimization algorithm inspired by the bubble-net hunting strategy of whales. In International Conference on Genetic and Evolutionary Computing (pp. 306–313). Cham: Springer.

    Google Scholar 

  84. Mostafa, A., Hassanien, A. E., Houseni, M., & Hefny, H. (2017). Liver segmentation in MRI images based on whale optimization algorithm. Multimedia Tools and Applications, 76(23), 24931–24954.

    Google Scholar 

  85. Tharwat, A., Moemen, Y. S., & Hassanien, A. E. (2017). Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines. Journal of biomedical informatics, 68, 132–149.

    Google Scholar 

  86. Wu, J., Wang, H., Li, N., Yao, P., Huang, Y., & Yang, H. (2018). Path planning for solar-powered UAV in urban environment. Neurocomputing, 275, 2055–2065.

    Google Scholar 

  87. Dao, T. K., Pan, T. S., & Pan, J. S. (2016). A multi-objective optimal mobile robot path planning based on whale optimization algorithm. In 2016 IEEE 13th International Conference on Signal Processing (ICSP) (pp. 337–342). IEEE.

    Google Scholar 

  88. Kaveh, A., & Ghazaan, M. I. (2017). Enhanced whale optimization algorithm for sizing optimization of skeletal structures. Mechanics Based Design of Structures and Machines, 45(3), 345–362.

    Google Scholar 

  89. Kaveh, A. (2017). Sizing optimization of skeletal structures using the enhanced whale optimization algorithm. In Applications of metaheuristic optimization algorithms in civil engineering (pp. 47–69). Cham: Springer.

    Google Scholar 

  90. Prakash, D. B., & Lakshminarayana, C. (2017). Optimal siting of capacitors in radial distribution network using whale optimization algorithm. Alexandria Engineering Journal, 56(4), 499–509.

    Google Scholar 

  91. Kumar, A., Bhalla, V., Kumar, P., Bhardwaj, T., & Jangir, N. (2018). Whale optimization algorithm for constrained economic load dispatch problems-A cost optimization. In Ambient Communications and Computer Systems (pp. 353–366). Singapore: Springer.

    Google Scholar 

  92. Khalilpourazari, S., Pasandideh, S. H. R., & Ghodratnama, A. (2019). Robust possibilistic programming for multi-item EOQ model with defective supply batches: Whale optimization and water cycle algorithms. Neural Computing and Applications, (in-press).

    Google Scholar 

  93. Zhang, X., Liu, Z., Miao, Q., & Wang, L. (2018). Bearing fault diagnosis using a whale optimization algorithm-optimized orthogonal matching pursuit with a combined timefrequency atom dictionary. Mechanical Systems and Signal Processing, 107, 29–42.

    Google Scholar 

  94. Abdel-Basset, M., Manogaran, G., El-Shahat, D., & Mirjalili, S. (2018). A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem. Future Generation Computer Systems, 85, 129–145.

    Google Scholar 

  95. Abdel-Basset, M., Manogaran, G., Abdel-Fatah, L., & Mirjalili, S. (2018). An improved nature inspired meta-heuristic algorithm for 1-D bin packing problems. Personal and Ubiquitous Computing, 1–16.

    Google Scholar 

  96. Horng, M. F., Dao, T. K., & Shieh, C. S. (2017). A Multi-objective optimal vehicle fuel consumption based on whale optimization algorithm. In Advances in Intelligent Information Hiding and Multimedia Signal Processing (pp. 371–380). Cham: Springer.

    Google Scholar 

  97. Masadeh, R., Alzaqebah, A., & Sharieh, A. (2018). Whale optimization algorithm for solving the maximum flow problem. Journal of Theoretical & Applied Information Technology, 96(8)

    Google Scholar 

  98. Fu, M., Liao, J., Shao, Z., Marko, M., Zhang, Y., Wang, X., et al. (2016). Finely engineered slow light photonic crystal waveguides for efficient wideband wavelength-independent higher-order temporal solitons. Applied Optics, 55(14), 3740–3745.

    Google Scholar 

  99. Jiang, L., Wu, H., Jia, W., & Li, X. (2013). Optimization of low-loss and wide-band sharp photonic crystal waveguide bends using the genetic algorithm. Optik-International Journal for Light and Electron Optics, 124(14), 1721–1725.

    Google Scholar 

  100. Mirjalili, S. M., Mirjalili, S., & Mirjalili, S. Z. (2015). How to design photonic crystal LEDs with artificial intelligence techniques. Electronics Letters, 51(18), 1437–1439.

    Google Scholar 

  101. Safdari, M. J., Mirjalili, S. M., Bianucci, P., & Zhang, X. (2018). Multi-objective optimization framework for designing photonic crystal sensors. Applied Optics, 57(8), 1950–1957.

    Google Scholar 

  102. Mirjalili, S. M., Merikhi, B., Mirjalili, S. Z., Zoghi, M., & Mirjalili, S. (2017). Multi-objective versus single-objective optimization frameworks for designing photonic crystal filters. Applied Optics, 56(34), 9444–9451.

    Google Scholar 

  103. Mirjalili, S. M., & Mirjalili, S. Z. (2017). Single-objective optimization framework for designing photonic crystal filters. Neural Computing Applications, 28(6), 1463–1469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedali Mirjalili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mirjalili, S., Mirjalili, S.M., Saremi, S., Mirjalili, S. (2020). Whale Optimization Algorithm: Theory, Literature Review, and Application in Designing Photonic Crystal Filters. In: Mirjalili, S., Song Dong, J., Lewis, A. (eds) Nature-Inspired Optimizers. Studies in Computational Intelligence, vol 811. Springer, Cham. https://doi.org/10.1007/978-3-030-12127-3_13

Download citation

Publish with us

Policies and ethics