Abstract
In this work, we consider wave propagation in fractured media. The mathematical model is described by Helmholtz problem related to wave propagation with specific interface conditions on the fracture in the frequency domain. We use a discontinuous Galerkin method for the approximation by space that help to weakly impose interface conditions on fractures. Such approximations lead to the large system of equations and computationally expensive. In this work, we construct a coarse grid approximation for effective solution using Generalized Multiscale Discontinuous Galerkin Method (GMsDGM). In this method, we construct a multiscale space using solution of the local spectral problems in each coarse elements. The results of the numerical solution for the two-dimensional problem are presented for model problems of the wave propagation in fractured media.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
De Basabe, J.D., Sen, M.K., Wheeler, M.F.: Seismic wave propagation in fractured media: a discontinuous Galerkin approach, SEG Expanded Abstr 30 (2011)
De Basabe, J.D., Sen, M.K., Wheeler, M.F.: Elastic wave propagation in fractured media using the discontinuous Galerkin method. Geophysics 81(4), T163–T174 (2016)
Zhang, J.: Elastic wave modeling in fractured media with an explicit approach. Geophysics 70(5), T75–T85 (2005)
Schoenberg, M.: Elastic wave behavior across linear slip interfaces. J. Acoust. Soc. Am. 68(5), 1516–1521 (1980)
Engquist, B., Majda, A.: Absorbing boundary conditions for numerical simulation of waves. Proc. Nat. Acad. Sci. 74(5), 1765–1766 (1977)
Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2430 (2006)
Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)
Lahivaara, T.: Discontinuous Galerkin Method for Time-Domain Wave Problems. University of Eastern Finland, Joensuu (2010)
Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 215, 116–135 (2013)
Chung, E.T., Efendiev, Y., Leung, W.T.: An online generalized multiscale discontinuous Galerkin method (GMsDGM) for flows in heterogeneous media. Commun. Comput. Phys. 21(2), 401–422 (2017)
Chung, E.T., Efendiev, Y., Leung, W.T.: Generalized multiscale finite element methods for wave propagation in heterogeneous media. Multiscale Model. Simul. 12(4), 1641–1721 (2014)
Gao, K., Fu, S., Gibson, R.L., Chung, E.T., Efendiev, Y.: Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media. J. Comput. Phys. 295, 161–188 (2015)
Chung, E.T., Efendiev, Y., Gibson, R.L., Vasilyeva, M.: A generalized multiscale finite element method for elastic wave propagation in fractured media. GEM-Int. J. Geomath. 7(2), 163–182 (2016)
Chung, E.T., Efendiev, Y., Fu, S.: Generalized multiscale finite element method for elasticity equations. GEM-Int. J. Geomath. 5(2), 225–251 (2014)
Acknowledgments
Work is supported by the mega-grant of the Russian Federation Government (N 14.Y26.31.0013).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Gavrileva, U., Alekseev, V., Vasilyeva, M., De Basabe, J.D., Efendiev, Y., Gibson, R.L. (2019). Generalized Multiscale Discontinuous Galerkin Method for Helmholtz Problem in Fractured Media. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-11539-5_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11538-8
Online ISBN: 978-3-030-11539-5
eBook Packages: Computer ScienceComputer Science (R0)