Nothing Special   »   [go: up one dir, main page]

Skip to main content

Making Large Collections of Handwritten Material Easily Accessible and Searchable

  • Conference paper
  • First Online:
Digital Libraries: Supporting Open Science (IRCDL 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 988))

Included in the following conference series:

  • 981 Accesses

Abstract

Libraries and cultural organisations contain a rich amount of digitised historical handwritten material in the form of scanned images. A vast majority of this material has not been transcribed yet, owing to technological challenges and lack of expertise. This renders the task of making these historical collections available for public access challenging, especially in performing a simple text search across the collection. Machine learning based methods for handwritten text recognition are gaining importance these days, which require huge amount of pre-transcribed texts for training the system. However, it is impractical to have access to several thousands of pre-transcribed documents due to adversities transcribers face. Therefore, this paper presents a training-free word spotting algorithm as an alternative for handwritten text transcription, where case studies on Alvin (Swedish repository) and Clavius on the Web are presented. The main focus of this work is on discussing prospects of making materials in the Alvin platform and Clavius on the Web easily searchable using a word spotting based handwritten text recognition system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www.alvin-portal.org/ (2017)

  2. http://urn.kb.se/resolve?urn=urn:nbn:se:alvin:portal:record-12537/

  3. http://urn.kb.se/resolve?urn=urn:nbn:se:alvin:portal:record-100958

  4. http://ucl.ac.uk/library/special-collections/a-z/ben-tham

  5. https://sok.riksarkivet.se/digitala-forskarsalen

  6. Abrate, M., et al.: Sharing cultural heritage: the clavius on the web project. In: LREC, pp. 627–634 (2014)

    Google Scholar 

  7. Pedretti, I., et al.: The clavius on the web project: digitization, annotation and visualization of early modern manuscripts. In: Proceedings of the Third AIUCD Annual Conference on Humanities and Their Methods in the Digital Ecosystem, p. 11. ACM (2014)

    Google Scholar 

  8. http://claviusontheweb.it

  9. http://www.totusmundus.it

  10. Valsecchi, F., Abrate, M., Bacciu, C., Piccini, S., Marchetti, A.: Text encoder and annotator: an all-in-one editor for transcribing and annotating manuscripts with RDF. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 399–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47602-5_52

    Chapter  Google Scholar 

  11. Piccini, S., et al.: When traditional ontologies are not enough: modelling and visualizing dynamic ontologies in semantic-based access to texts. In: Digital Humanities 2016: Conference Abstracts, Jagiellonian University and Pedagogical University, Kraków (2016)

    Google Scholar 

  12. Piccini, S., Bellandi, A., Benotto, G.: Formalizing and querying a diachronic termino-ontological resource: the clavius case study. In: Digital Humanities 2016. From Digitization to Knowledge 2016: Resources and Methods for Semantic Processing of Digital Works/Texts, Proceedings of the Workshop, Krakow, Poland, 11 July 2016, pp. 38–41, no. 126. Linköping University Electronic Press (2016)

    Google Scholar 

  13. http://scripto.org/

  14. https://publications.newberry.org/digital/mms-transcribe/index

  15. http://moravian-lives.org/l

  16. http://www.ai.rug.nl/~lambert/Monk-collections-english.html

  17. http://read.transkribus.eu/

  18. Romero, V., Bosch, V., Hernández, C., Vidal, E., Sánchez, J.A.: A historical document handwriting transcription end-to-end system. In: Alexandre, L.A., Salvador Sánchez, J., Rodrigues, J.M.F. (eds.) IbPRIA 2017. LNCS, vol. 10255, pp. 149–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58838-4_17

    Chapter  Google Scholar 

  19. Terrades, O.R., Toselli, A.H., Serrano, N., Romero, V., Vidal, E., Juan, A.: Interactive layout analysis and transcription systems for historic handwritten documents. In: 10th ACM Symposium on Document Engineering, pp. 219–222 (2010)

    Google Scholar 

  20. Serrano, N., Pérez, D., Sanchis, A., Juan, A.: Adaptation from partially supervised handwritten text transcriptions. In: Proceedings of the 2009 International Conference on Multimodal Interfaces, ICMI-MLMI 2009, pp. 289–292. ACM, New York (2009)

    Google Scholar 

  21. Serrano, N., Giménez, A., Sanchis, A., Juan, A.: Active learning strategies for handwritten text transcription. In: International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction, ICMI-MLMI 2010, pp. 48:1–48:4. ACM, New York (2010)

    Google Scholar 

  22. Romero, V., Toselli, A.H., Vidal, E.: Multimodal Interactive Handwritten Text Transcription, vol. 80. World Scientific, Singapore (2012)

    MATH  Google Scholar 

  23. http://prhlt.iti.es/projects/handwritten/idoc/ content.php?page=gidoc.php

  24. Moyle, M., Tonra, J., Wallace, V.: Manuscript transcription by crowdsourcing: transcribe Bentham. Liber Q. 20(3–4), 347–356 (2011)

    Article  Google Scholar 

  25. http://transkribus.eu/Transkribus/

  26. Hast, A., Fornés, A.: A segmentation-free handwritten word spotting approach by relaxed feature matching. In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS), pp. 150–155. IEEE (2016)

    Google Scholar 

  27. Vats, E., Hast, A., Singh, P.: Automatic document image binarization using Bayesian optimization. In: Proceedings of the 4th International Workshop on Historical Document Imaging and Processing, pp. 89–94. ACM (2017)

    Google Scholar 

  28. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

    Article  Google Scholar 

  29. Hast, A., Vats, E.: Radial line Fourier descriptor for historical handwritten text representation. In: 26th International Conference on Computer Graphics, Visualization and Computer Vision (2018)

    Google Scholar 

  30. Zagoris, K., Pratikakis, I., Gatos, B.: Unsupervised word spotting in historical handwritten document images using document-oriented local features. IEEE Trans. Image Process. 26(8), 4032–4041 (2017)

    Article  MathSciNet  Google Scholar 

  31. Leydier, Y., Ouji, A., LeBourgeois, F., Emptoz, H.: Towards an omnilingual word retrieval system for ancient manuscripts. Pattern Recognit. 42(9), 2089–2105 (2009)

    Article  Google Scholar 

  32. Hast, A., Marchetti, A.: An efficient preconditioner and a modified RANSAC for fast and robust feature matching. In: WSCG 2012 (2012)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Swedish strategic research programme eSSENCE and the Riksbankens Jubileumsfond (Dnr NHS14-2068:1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Hast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hast, A., Cullhed, P., Vats, E., Abrate, M. (2019). Making Large Collections of Handwritten Material Easily Accessible and Searchable. In: Manghi, P., Candela, L., Silvello, G. (eds) Digital Libraries: Supporting Open Science. IRCDL 2019. Communications in Computer and Information Science, vol 988. Springer, Cham. https://doi.org/10.1007/978-3-030-11226-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11226-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11225-7

  • Online ISBN: 978-3-030-11226-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics