Nothing Special   »   [go: up one dir, main page]

Skip to main content

Constructing Regular Expressions from Real-Life Event Logs

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11179))

  • 876 Accesses

Abstract

Process mining is a new discipline aimed at constructing process models from event logs. Recently several methods for the discovery of transition systems from event logs were introduced. Considering these transition systems as finite state machines classical algorithms for deriving regular expressions can be applied. Regular expressions allow representing sequential process models in a hierarchical way, using sequence, choice, and iterative patterns. The aim of this work is to apply and tune an algorithm deriving regular expressions from transition systems within the process mining domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://bitbucket.org/akalenkova/mineexpression.

References

  1. van der Aalst, W.: Process Mining: Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  2. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_17

    Chapter  Google Scholar 

  3. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 91–110. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5_6

    Chapter  Google Scholar 

  4. van der Aalst, W., Rubin, V., Verbeek, H., van Dongen, B., Kindler, E., Günther, C.: Process mining: a two-step approach to balance between underfitting and overfitting. Softw. Syst. Model. 9(1), 87 (2008)

    Article  Google Scholar 

  5. Kleene, S.: Representation of events in nerve nets and finite automata. In: Automata Studies, pp. 3–41. Princeton University Press, Princeton (1956)

    Google Scholar 

  6. Brzozowski, J.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)

    Article  MathSciNet  Google Scholar 

  7. Linz, P.: An Introduction to Formal Language and Automata. Jones and Bartlett Publishers Inc., Burlington (2006)

    MATH  Google Scholar 

  8. Delgado, M., Morais, J.: Approximation to the smallest regular expression for a given regular language. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 312–314. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30500-2_31

    Chapter  Google Scholar 

  9. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744_25

    Chapter  Google Scholar 

  10. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences. SIGPLAN Not. 51(1), 137–150 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Basic Research Program at the National Research University Higher School of Economics and funded by the President Grant MK-4188.2018.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna A. Kalenkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tarantsova, P.D., Kalenkova, A.A. (2018). Constructing Regular Expressions from Real-Life Event Logs. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2018. Lecture Notes in Computer Science(), vol 11179. Springer, Cham. https://doi.org/10.1007/978-3-030-11027-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11027-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11026-0

  • Online ISBN: 978-3-030-11027-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics