Nothing Special   »   [go: up one dir, main page]

Skip to main content

Undecidable Word Problem in Subshift Automorphism Groups

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11532))

Included in the following conference series:

Abstract

This article studies the complexity of the word problem in groups of automorphisms (or reversible cellular automata) of subshifts. We show in particular that for any computably enumerable Turing degree, there exists a (two-dimensional) subshift of finite type whose automorphism group contains a subgroup whose word problem has exactly this degree. In particular, there are such subshifts of finite type where this problem is uncomputable. This remains true in a large setting of subshifts over groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We could deal in the same way with semigroups, by prohibiting the empty word.

References

  1. Aubrun, N., Béal, M.-P.: Decidability of conjugacy of tree-shifts of finite type. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 132–143. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02927-1_13

    Chapter  Google Scholar 

  2. Comon, H., et al.: Tree automata techniques and applications (2007). http://www.grappa.univ-lille3.fr/tata. Accessed 12 Oct 2007

  3. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Formal Models and Semantics, Handbook of Theoretical Computer Science, pp. 133–191. Elsevier, Amsterdam (1990)

    Google Scholar 

  4. Boyle, M., Lind, D.A., Rudolph, D.J.: The automorphism group of a shift of finite type. Trans. Am. Math. Soc. 306(1), 71–114 (1988)

    Article  MathSciNet  Google Scholar 

  5. Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 419–430. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85238-4_34

    Chapter  Google Scholar 

  6. Coven, E., Yassawi, R.: Endomorphisms and automorphisms of minimal symbolic systems with sublinear complexity (2014)

    Google Scholar 

  7. Cyr, V., Kra, B.: The automorphism group of a shift of linear growth: beyond transitivity (2014)

    Google Scholar 

  8. Donoso, S., Durand, F., Maass, A., Petite, S.: On automorphism groups of low complexity subshifts (2015)

    Google Scholar 

  9. Hochman, M.: Groups of automorphisms of SFTs. Open problems (2017). http://math.huji.ac.il/~mhochman/problems/automorphisms.pdf

  10. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1987)

    Google Scholar 

  11. Rabin, M.O.: Computable algebra, general theory and theory of computable fields. Trans. Am. Math. Soc. 95, 341–360 (1960)

    MathSciNet  MATH  Google Scholar 

  12. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory 3, 320–375 (1969)

    Article  MathSciNet  Google Scholar 

  13. Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput. Syst. Sci. 48(1), 149–182 (1994)

    Article  MathSciNet  Google Scholar 

  14. Aubrun, N., Barbieri, S., Sablik, M.: A notion of effectiveness for subshifts on finitely generated groups. Theor. Comput. Sci. 661, 35–55 (2017)

    Article  MathSciNet  Google Scholar 

  15. Boykett, T., Kari, J., Salo, V.: Finite generating sets for reversible gate sets under general conservation laws. Theor. Comput. Sci. 701, 27–39 (2017)

    Article  MathSciNet  Google Scholar 

  16. Simpson, S.G.: Medvedev degrees of 2-dimensional subshifts of finite type. Ergodic Theory Dyn. Syst. 34(November 2012), 665–674 (2014)

    MathSciNet  Google Scholar 

  17. Hanf, W., Myers, D.: Non recursive tilings of the plane II. J. Symbolic Logic 39(2), 286–294 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Academy of Finland grant 296018.

We thank Ville Salo for some discussions on commutators, on the open questions, and for a careful reading of this preprint.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Guillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guillon, P., Jeandel, E., Kari, J., Vanier, P. (2019). Undecidable Word Problem in Subshift Automorphism Groups. In: van Bevern, R., Kucherov, G. (eds) Computer Science – Theory and Applications. CSR 2019. Lecture Notes in Computer Science(), vol 11532. Springer, Cham. https://doi.org/10.1007/978-3-030-19955-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19955-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19954-8

  • Online ISBN: 978-3-030-19955-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics