Abstract
In the last few years, robotics has attracted much interest as a tool to support education through social interaction. Since Social- Emotional Learning (SEL) influences academic success, affective robot tutors have a great potential within education. In this article we report on our research in recognition of facial emotional expressions, aimed at improving ARTIE, an integrated environment for the development of affective robot tutors. A Full Convolutional Neural Network (FCNN) model has been trained with the Fer2013 dataset, and then validated with another dataset containing facial images of primary school children, which has been compiled during computing lab sessions. Our first prototype recognizes primary school children facial emotional expressions with 69,15% accuracy. As a future work we intend to further refine the ARTIE Emotional Component with a view to integrating the main singularities of primary school children emotional expression.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Johnson, A.: Supporting teachers through social and emotional learning. Success High-Need Sch. J. 14(1), 26–29 (2018)
Van Deur, P.: Transforming the Future of Learning with Educational Research, no. May, vol. i, pp. 79–98 (2015). ISBN 9781466674950. https://doi.org/10.4018/978-1-4666-7495-0
Kulkarni, A., Shendge, A., Varma, V., Kimmatkar, N.V.: Intelligent emotion detection system using facial images. Int. Res. J. Eng. Technol. (2015). ISSN 2395–0072
Imbernón Cuadrado, L.-E., Manjarrés Riesco, Á., De la Paz López, F.: ARTIE: an integrated environment for the development of affective robot tutors. Front. Comput. Neurosci. 10, 77 (2016). ISSN 1662–5188. https://doi.org/10.3389/fncom.2016.00077
LoBue, V., Thrasher, C.: The child affective facial expression (CAFE) set: validity and reliability from untrained adults. Front. Psychol. 5(OCT), 1–8 (2014). ISBN 1664-1078 (Electronic), ISSN 16641078, pmid: 25610415. https://doi.org/10.3389/fpsyg.2014.01532
Wenzler, S., et al.: Beyond pleasure and pain: facial expression ambiguity in adults and children during intense situations. Emotion 16(6), 807–814 (2016). ISBN 1528-3542, ISSN 19311516, pmid: 27337681. https://doi.org/10.1037/emo0000185
Scassellati, B., Kennedy, J., Belpaeme, T., Ramachandran, A., Tanaka, F.: Social robots for education: a review. Sci. Robot. 3(21), aat5954 (2018). ISSN 2470–9476. https://doi.org/10.1126/scirobotics.aat5954
Skillicorn, D.B., Alsadhan, N., Billingsley, R., Williams, M.-A.: Social Robot Modelling of Human Affective State, pp. 1–32. arxiv: 1705.00786 (2017)
Deisenroth, M., Pantic, M., Merino, L., Schuller, B., Evers, V.: Social and Affective Robotics Tutorial, pp. 1477–1478 (2016). ISBN 9781450336031. https://doi.org/10.1145/2964284.2986914
Boccanfuso, L., et al.: Emotional robot to examine different play patterns and affective responses of children with and without ASD, In: ACM/IEEE International Conference on Human-Robot Interaction, vol. 2016-April, pp. 19–26 (2016). ISSN 21672148, ISBN 9781467383707. https://doi.org/10.1109/HRI.2016.7451729
Keren, G., Ben-David, A., Fridin, M.: Kindergarten assistive robotics (KAR) as a tool for spatial cognition development in pre-school education. In: IEEE International Conference on Intelligent Robots and Systems, pp. 1084–1089 (2012). ISSN 21530858, ISBN 9781467317375. https://doi.org/10.1109/IROS.2012.6385645
Schodde, T., Hoffmann, L., Kopp, S.: How to manage affective state in child-robot tutoring interactions? In: 2017 International Conference on Companion Technology, ICCT 2017, vol. 2018-February, pp. 1–6 (2018). ISBN 9781538611609. https://doi.org/10.1109/COMPANION.2017.8287073
Spaulding, S., Aviv, T., Breazeal, C.: Affect-aware student models for robot tutors. In: Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2016) (2016). ISSN 15582914, ISBN 978-1-4503-4239-1
Gordon, G., et al.: Affective personalization of a social robot tutor for children’s second language skills. In: Proceedings of the 30th Conference on Artificial Intelligence (AAAI 2016), no. 2011 (2016). ISBN 9781577357605
Moerland, T.M., Broekens, J., Jonker, C.M.: Emotion in reinforcement learning agents and robots: a survey. Mach. Learn. 107(2), 443–480 (2018). ISSN 15730565, ISBN 1099401756660, pmid: 16720230. arxiv: 1705.05172. https://doi.org/10.1007/s10994-017-5666-0
Devries, T., Biswaranjan, K., Taylor, G.W.: Multi-task learning of facial landmarks and expression. In: Proceedings - Conference on Computer and Robot Vision, CRV 2014, pp. 98–103 (2014). ISBN 9781479943388. https://doi.org/10.1109/CRV.2014.21
Pramerdorfer, C., Kampel, M.: Facial Expression Recognition using Convolutional Neural Networks: State of the Art, arxiv: 1612.02903, eprint: 1612.02903 (2016)
Zhou, W., Ahrary, A., Kamata, S.I.: Image description with local patterns: an application to face recognition. IEICE Trans. Inf. Syst. E95-D(5), 1494–1505 (2012). ISSN 17451361. https://doi.org/10.1587/transinf.E95.D.1494
Déniz, O., Bueno, G., Salido, J., De La Torre, F.: Face recognition using histograms of oriented gradients. Pattern Recogn. Lett. 32(12), 1598–1603 (2011). ISSN 01678655, ISBN 9789896740283. https://doi.org/10.1016/j.patrec.2011.01.004
Jain, N., Kumar, S., Kumar, A., Shamsolmoali, P., Zareapoor, M.: Hybrid deep neural networks for face emotion recognition. Pattern Recogn. Lett. (2018). ISSN 01678655, ISBN 978-953-51-1183-2. https://doi.org/10.1016/j.patrec.2018.04.010
Kim, B.K., Dong, S.Y., Roh, J., Kim, G., Lee, S.Y.: Fusing aligned and non-aligned face information for automatic affect recognition in the wild: a deep learning approach. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1499–1508 (2016). ISSN 21607516, ISBN 9781467388504. https://doi.org/10.1109/CVPRW.2016.187
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Imbernón Cuadrado, LE., Manjarrés Riesco, Á., de la Paz López, F. (2019). FER in Primary School Children for Affective Robot Tutors. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) From Bioinspired Systems and Biomedical Applications to Machine Learning. IWINAC 2019. Lecture Notes in Computer Science(), vol 11487. Springer, Cham. https://doi.org/10.1007/978-3-030-19651-6_45
Download citation
DOI: https://doi.org/10.1007/978-3-030-19651-6_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19650-9
Online ISBN: 978-3-030-19651-6
eBook Packages: Computer ScienceComputer Science (R0)