Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Principled Two-Step Method for Example-Dependent Cost Binary Classification

  • Conference paper
  • First Online:
From Bioinspired Systems and Biomedical Applications to Machine Learning (IWINAC 2019)

Abstract

This paper presents a principled two-step method for example-dependent cost binary classification problems. The first step obtains a consistent estimate of the posterior probabilities by training a Multi-Layer Perceptron with a Bregman surrogate cost. The second step uses the provided estimates in a Bayesian decision rule. When working with imbalanced datasets, neutral re-balancing allows getting better estimates of the posterior probabilities. Experiments with real datasets show the good performance of the proposed method in comparison with other procedures.

This work has been partially supported by Research Grant MacroADOBE (TEC2015-67719-P, MINECO/FEDER, EU) and by Research Project 2-BARBAS (Fundación BBVA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\widetilde{Q}\) can be interpreted as \(\widetilde{Q}_P\).

  2. 2.

    Dataset available at http://www.creditriskanalytics.net.

  3. 3.

    http://scikit-learn.org.

  4. 4.

    http://pypi.org/project/costcla/.

References

  1. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  2. Van Trees, H.L.: Detection, Estimation, and Modulation Theory: Part I. Wiley, New York (1968)

    MATH  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  4. Zhang, G.P.: Neural networks for classification: a survey. IEEE Trans. Syst. Man Cybern. 30(4), 451–462 (2000)

    Article  Google Scholar 

  5. Widrow, B., Rumelhart, D.E., Lehr, M.A.: Neural networks: applications in industry, business and science. Commun. ACM 37(3), 93–105 (1994)

    Article  Google Scholar 

  6. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  7. Panigrahi, S., Kundu, A., Surai, S., Majumdar, A.K.: Credit card fraud detection: a fusion approach using Dempster-Shafer theory and Bayesian learning. Inf. Fusion 10(4), 354–363 (2009)

    Article  Google Scholar 

  8. Bhattacharyya, S., Jha, S., Tharakunnel, K., Westland, J.C.: Data mining for credit card fraud: a comparative study. Decis. Support Syst. 50(3), 602–613 (2011)

    Article  Google Scholar 

  9. Verbraken, T., Bravo, C., Webber, R., Baesens, B.: Development and application of consumer credit scoring models using profit-based classification measures. Eur. J. Oper. Res. 238(2), 505–513 (2014)

    Article  MathSciNet  Google Scholar 

  10. Bahnsen, A.C., Aouada, D., Ottersten, B.: Example-dependent cost-sensitive logistic regression for credit scoring. In: Proceedings of 13th International Conference on Machine Learning and Applications, pp. 263–269. IEEE Computer Society (2014)

    Google Scholar 

  11. Ngai, E.W.T., Xiu, L., Chau, D.C.K.: Application of data mining techniques in customer relationship management: a literature review and classification. Expert Syst. Appl. 36(2), 2592–2602 (2009)

    Article  Google Scholar 

  12. Moro, S., Laureano, R.M.S., Cortez, P.: Using data mining for bank direct marketing: an application of the CRISP-DM methodology. In: Proceedings of European Simulation and Modeling Conference, Guimaraes (Portugal), pp. 117–121 (2011)

    Google Scholar 

  13. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of 17th International Joint Conference on Artificial Intelligence, vol. 2, pp. 973–978 (2001)

    Google Scholar 

  14. Zadrozny, B., Langford, J., Abe, N.: Cost-sensitive learning by cost-proportionate example weighting. In: Proceedings of Third International Conference on Data Mining, pp. 435–442 (2003)

    Google Scholar 

  15. Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. 49(2), 31:1–31:50 (2016)

    Article  Google Scholar 

  16. Brefeld, U., Geibel, P., Wysotzki, F.: Support vector machines with example dependent costs. In: Lavrač, N., Gamberger, D., Blockeel, H., Todorovski, L. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 23–34. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39857-8_5

    Chapter  Google Scholar 

  17. González, P., et al.: Multiclass support vector machines with example dependent costs applied to plankton biomass estimation. IEEE Trans. Neural Netw. Learn. Syst. 24(11), 1901–1905 (2013)

    Article  Google Scholar 

  18. Bahnsen, A.C., Stojanovic, A., Aouada, D., Ottersten, B.: Cost sensitive credit card fraud detection using Bayes minimization risk. In: Proceedings of 12th International Conference on Machine Learning and Applications, pp. 333–338. IEEE Computer Society (2013)

    Google Scholar 

  19. Bahnsen, A.C., Stojanovic, A., Aouada, D., Ottersten, B.: Improving credit card fraud detection with calibrated probabilities. In: Proceedings of 14th International Conference on Data Mining, Philadelphia, USA, pp. 677–685. SIAM (2014)

    Google Scholar 

  20. Bahnsen, A.C., Aouada, D., Ottersten, B.: A novel cost-sensitive framework for customer churn predictive modeling. Decis. Anal. 2(5), 1–15 (2015)

    Google Scholar 

  21. Bahnsen, A.C., Aouada, D., Ottersten, B.: Example-dependent cost-sensitive decision trees. Expert Syst. Appl. 42(19), 6609–6619 (2015)

    Article  Google Scholar 

  22. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  MathSciNet  Google Scholar 

  23. Cid-Sueiro, J., Arribas, J.I., Urbán-Muñoz, S., Figueiras-Vidal, A.R.: Cost functions to estimate a posteriori probabilities in multiclass problems. IEEE Trans. Neural Netw. 10(3), 645–656 (1999)

    Article  Google Scholar 

  24. Cid-Sueiro, J., Figueiras-Vidal, A.R.: On the structure of strict sense Bayesian cost functions and its applications. IEEE Trans. Neural Netw. 12(3), 445–455 (2001)

    Article  Google Scholar 

  25. Bahnsen, A.C.: Cost Sensitive Classification (COSTCLA) Python module for cost-sensitive machine learning (classification), Version 0.5 (1996). https://pypi.org/project/costcla/

  26. Baesens, B., Roesch, D., Scheule, H.: Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, New York (2016)

    Book  Google Scholar 

  27. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Lázaro, M., Hayes, M.H., Figueiras-Vidal, A.R.: Training neural network classifiers through Bayes risk minimization applying unidimensional Parzen windows. Pattern Recognit. 77, 204–215 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javier Mediavilla-Relaño , Aitor Gutiérrez-López , Marcelino Lázaro or Aníbal R. Figueiras-Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mediavilla-Relaño, J., Gutiérrez-López, A., Lázaro, M., Figueiras-Vidal, A.R. (2019). A Principled Two-Step Method for Example-Dependent Cost Binary Classification. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) From Bioinspired Systems and Biomedical Applications to Machine Learning. IWINAC 2019. Lecture Notes in Computer Science(), vol 11487. Springer, Cham. https://doi.org/10.1007/978-3-030-19651-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19651-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19650-9

  • Online ISBN: 978-3-030-19651-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics