Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advanced Trajectory Generator for Two Carts with RGB-D Sensor on Circular Rail

  • Conference paper
  • First Online:
Understanding the Brain Function and Emotions (IWINAC 2019)

Abstract

This paper presents a motorised circular rail that generates the motion of two carts with an RGB-D sensor each. The objective of both carts’ trajectory generation is to track a person’s physical rehabilitation exercises from two points of view and his/her emotional state from one of these viewpoints. The person is moving freely his/her position and posture within the circle drawn by the motorised rail. More specifically, this paper describes the calculation of trajectories for safe motion of the two carts on the motorised circular rail in detail. Lastly, a study case is offered to show the performance of the described control algorithms for trajectory generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tian, G., Liu, L., Ri, J.H., Liu, Y.: ObjectFusion: an object detection and segmentation framework with RGB-D SLAM and convolutional neural networks. Author links open overlay panel bYiranSuna

    Google Scholar 

  2. Freitas, D., et al.: Development and evaluation of a Kinect based motor rehabilitation game. Simposio Brasileiro de Jogos e Entretenimento Digital, pp. 144–153 (2012)

    Google Scholar 

  3. Chang, Y., Chen, S., Huang, J.: A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res. Dev. Disabil. 326, 2566–2570 (2011)

    Article  Google Scholar 

  4. López-Valles, J.M., Fernández, M.A., Fernández-Caballero, A.: Stereovision depth analysis by two-dimensional motion charge memories. Pattern Recognit. Lett. 28(1), 20–30 (2007)

    Article  Google Scholar 

  5. Oliver, M., Montero, F., Molina, J.P., González, P., Fernández-Caballero, A.: Multi-camera systems for rehabilitation therapies: a study of the precision of Microsoft Kinect sensors. Front. Inf. Technol. Electron. Eng. 17(4), 348–364 (2016)

    Article  Google Scholar 

  6. Oliver, M., Montero, F., Fernández-Caballero, A., González, P., Molina, J.P.: RGB-D assistive technologies for acquired brain injury: description and assessment of user experience. Expert Syst. 32(3), 370–380 (2015)

    Article  Google Scholar 

  7. Castillo, J.C., Fernández-Caballero, A., Castro-González, Á., Salichs, M.A., López, M.T.: A framework for recognizing and regulating emotions in the elderly. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 320–327. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13105-4_46

    Chapter  Google Scholar 

  8. Lozano-Monasor, E., López, M.T., Fernández-Caballero, A., Vigo-Bustos, F.: Facial expression recognition from webcam based on active shape models and support vector machines. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 147–154. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13105-4_23

    Chapter  Google Scholar 

  9. Wang, P., Li, W., Ogunbona, P., Wan, J., Escalera, S.: RGB-D-based human motion recognition with deep learning: a survey. Comput. Vision Image Underst. 171, 118–139 (2018)

    Article  Google Scholar 

  10. Fernández-Caballero, A., López, M.T., Saiz-Valverde, S.: Dynamic stereoscopic selective visual attention (DSSVA): integrating motion and shape with depth in video segmentation. Expert Syst. Appl. 34(2), 1394–1402 (2008)

    Article  Google Scholar 

  11. Castillo, J.C., Fernández-Caballero, A., Serrano-Cuerda, J., López, M.T., Martínez-Rodrigo, A.: Smart environment architecture for robust people detection by infrared and visible video fusion. J. Ambient Intel. Humanized Comput. 8(2), 223–237 (2017)

    Article  Google Scholar 

  12. Fernández-Caballero, A., López, M.T., Serrano-Cuerda, J.: Thermal-infrared pedestrian ROI extraction through thermal and motion information fusion. Sensors 14(4), 6666–6676 (2014)

    Article  Google Scholar 

  13. Moreno-Garcia, J., Rodriguez-Benitez, L., Fernández-Caballero, A., López, M.T.: Video sequence motion tracking by fuzzification techniques. Appl. Soft Comput. 10(1), 318–331 (2010)

    Article  Google Scholar 

  14. Florea, A.G., Buiu, C.: A distributed approach to the control of multi-robot systems using XP colonies. Integr. Comput.-Aided Eng. 25(1), 15–29 (2018)

    Article  Google Scholar 

  15. Morales, R., Chocoteco, J., Feliu, V., Sira-Ramírez, H.: Obstacle surpassing and posture control of a stair-climbing robotic mechanism. Control Eng. Pract. 21, 604–621 (2013)

    Article  Google Scholar 

  16. Morales, R., González, A., Feliu, V., Pintado, P.: Environment adaptation of a new staircase climbing wheelchair. Auton. Robots 23, 275–292 (2007)

    Article  Google Scholar 

  17. Panwar, R., Sukavanam, N.: Trajectory tracking using artificial neural network for stable human-like gait with upper body motion. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3842-1

  18. Almansa-Valverde, S., Castillo, J.C., Fernández-Caballero, A.: Mobile robot map building from time-of-flight camera. Expert Syst. Appl. 39(10), 8835–8843 (2012)

    Article  Google Scholar 

  19. Gascueña, J.M., Fernández-Caballero, A.: Agent-oriented modeling and development of a person-following mobile robot. Expert Syst. Appl. 38(4), 4280–4290 (2011)

    Article  Google Scholar 

  20. Morales, R., Somolinos, J.A., Fernández-Caballero, A., Ferraresi, C.: Rehabilitation robotics and systems. J. Healthc. Eng. 2018, 5370127 (2018)

    Article  Google Scholar 

  21. Chocoteco, J., Morales, R., Feliu, V.: Enhancing the trajectory generation of a stair-climbing mobility system. Sensors 17(1), 1–31 (2017)

    Article  Google Scholar 

  22. Chocoteco, J., Morales, R., Feliu, V., Sánchez, L.: Trajectory planning for a stair-climbing mobility system using laser distance sensors. IEEE Syst. J. 10(3), 944–956 (2016)

    Article  Google Scholar 

  23. Benito-Picazo, J., Domínguez, E., Palomo, E.J., López-Rubio, E., Ortiz-de-Lazcano-Lobato, J.M.: Motion detection with low cost hardware for PTZ cameras. Integr. Comput.-Aided Eng. 26(1), 21–36 (2019)

    Article  Google Scholar 

  24. Panduro, R., Oliver, M., Morales, R., González, P., Fernández-Caballero, A.: Motorized multi-camera slider for precise monitoring of physical rehabilitation. In: García, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds.) UCAmI/IWAAL/AmIHEALTH -2016. LNCS, vol. 10070, pp. 21–27. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48799-1_3

    Chapter  Google Scholar 

  25. Mkhitaryan, A., Burschka, D.: RGB-D sensor data correction and enhancement by introduction of an additional RGB view. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1077–1083 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación (AEI) / European Regional Development Fund (FEDER, UE) under DPI2016-80894-R grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Fernández-Caballero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panduro, R. et al. (2019). Advanced Trajectory Generator for Two Carts with RGB-D Sensor on Circular Rail. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19591-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19590-8

  • Online ISBN: 978-3-030-19591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics