Abstract
This paper presents a motorised circular rail that generates the motion of two carts with an RGB-D sensor each. The objective of both carts’ trajectory generation is to track a person’s physical rehabilitation exercises from two points of view and his/her emotional state from one of these viewpoints. The person is moving freely his/her position and posture within the circle drawn by the motorised rail. More specifically, this paper describes the calculation of trajectories for safe motion of the two carts on the motorised circular rail in detail. Lastly, a study case is offered to show the performance of the described control algorithms for trajectory generation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tian, G., Liu, L., Ri, J.H., Liu, Y.: ObjectFusion: an object detection and segmentation framework with RGB-D SLAM and convolutional neural networks. Author links open overlay panel bYiranSuna
Freitas, D., et al.: Development and evaluation of a Kinect based motor rehabilitation game. Simposio Brasileiro de Jogos e Entretenimento Digital, pp. 144–153 (2012)
Chang, Y., Chen, S., Huang, J.: A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res. Dev. Disabil. 326, 2566–2570 (2011)
López-Valles, J.M., Fernández, M.A., Fernández-Caballero, A.: Stereovision depth analysis by two-dimensional motion charge memories. Pattern Recognit. Lett. 28(1), 20–30 (2007)
Oliver, M., Montero, F., Molina, J.P., González, P., Fernández-Caballero, A.: Multi-camera systems for rehabilitation therapies: a study of the precision of Microsoft Kinect sensors. Front. Inf. Technol. Electron. Eng. 17(4), 348–364 (2016)
Oliver, M., Montero, F., Fernández-Caballero, A., González, P., Molina, J.P.: RGB-D assistive technologies for acquired brain injury: description and assessment of user experience. Expert Syst. 32(3), 370–380 (2015)
Castillo, J.C., Fernández-Caballero, A., Castro-González, Á., Salichs, M.A., López, M.T.: A framework for recognizing and regulating emotions in the elderly. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 320–327. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13105-4_46
Lozano-Monasor, E., López, M.T., Fernández-Caballero, A., Vigo-Bustos, F.: Facial expression recognition from webcam based on active shape models and support vector machines. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 147–154. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13105-4_23
Wang, P., Li, W., Ogunbona, P., Wan, J., Escalera, S.: RGB-D-based human motion recognition with deep learning: a survey. Comput. Vision Image Underst. 171, 118–139 (2018)
Fernández-Caballero, A., López, M.T., Saiz-Valverde, S.: Dynamic stereoscopic selective visual attention (DSSVA): integrating motion and shape with depth in video segmentation. Expert Syst. Appl. 34(2), 1394–1402 (2008)
Castillo, J.C., Fernández-Caballero, A., Serrano-Cuerda, J., López, M.T., Martínez-Rodrigo, A.: Smart environment architecture for robust people detection by infrared and visible video fusion. J. Ambient Intel. Humanized Comput. 8(2), 223–237 (2017)
Fernández-Caballero, A., López, M.T., Serrano-Cuerda, J.: Thermal-infrared pedestrian ROI extraction through thermal and motion information fusion. Sensors 14(4), 6666–6676 (2014)
Moreno-Garcia, J., Rodriguez-Benitez, L., Fernández-Caballero, A., López, M.T.: Video sequence motion tracking by fuzzification techniques. Appl. Soft Comput. 10(1), 318–331 (2010)
Florea, A.G., Buiu, C.: A distributed approach to the control of multi-robot systems using XP colonies. Integr. Comput.-Aided Eng. 25(1), 15–29 (2018)
Morales, R., Chocoteco, J., Feliu, V., Sira-Ramírez, H.: Obstacle surpassing and posture control of a stair-climbing robotic mechanism. Control Eng. Pract. 21, 604–621 (2013)
Morales, R., González, A., Feliu, V., Pintado, P.: Environment adaptation of a new staircase climbing wheelchair. Auton. Robots 23, 275–292 (2007)
Panwar, R., Sukavanam, N.: Trajectory tracking using artificial neural network for stable human-like gait with upper body motion. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3842-1
Almansa-Valverde, S., Castillo, J.C., Fernández-Caballero, A.: Mobile robot map building from time-of-flight camera. Expert Syst. Appl. 39(10), 8835–8843 (2012)
Gascueña, J.M., Fernández-Caballero, A.: Agent-oriented modeling and development of a person-following mobile robot. Expert Syst. Appl. 38(4), 4280–4290 (2011)
Morales, R., Somolinos, J.A., Fernández-Caballero, A., Ferraresi, C.: Rehabilitation robotics and systems. J. Healthc. Eng. 2018, 5370127 (2018)
Chocoteco, J., Morales, R., Feliu, V.: Enhancing the trajectory generation of a stair-climbing mobility system. Sensors 17(1), 1–31 (2017)
Chocoteco, J., Morales, R., Feliu, V., Sánchez, L.: Trajectory planning for a stair-climbing mobility system using laser distance sensors. IEEE Syst. J. 10(3), 944–956 (2016)
Benito-Picazo, J., Domínguez, E., Palomo, E.J., López-Rubio, E., Ortiz-de-Lazcano-Lobato, J.M.: Motion detection with low cost hardware for PTZ cameras. Integr. Comput.-Aided Eng. 26(1), 21–36 (2019)
Panduro, R., Oliver, M., Morales, R., González, P., Fernández-Caballero, A.: Motorized multi-camera slider for precise monitoring of physical rehabilitation. In: García, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds.) UCAmI/IWAAL/AmIHEALTH -2016. LNCS, vol. 10070, pp. 21–27. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48799-1_3
Mkhitaryan, A., Burschka, D.: RGB-D sensor data correction and enhancement by introduction of an additional RGB view. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1077–1083 (2013)
Acknowledgements
This work was partially supported by Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación (AEI) / European Regional Development Fund (FEDER, UE) under DPI2016-80894-R grant.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Panduro, R. et al. (2019). Advanced Trajectory Generator for Two Carts with RGB-D Sensor on Circular Rail. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-19591-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19590-8
Online ISBN: 978-3-030-19591-5
eBook Packages: Computer ScienceComputer Science (R0)