Abstract
Many real-world decision-making problems do not possess a clearly defined objective function, but instead aim to find solutions that capture implicit user preferences. This makes it challenging to directly apply classical optimization technology such as integer programming or constraint programming. Machine learning provides an alternative by learning the agents’ decision-making implicitly via neural networks. However, solutions generated by neural networks often fail to satisfy physical or operational constraints. We propose a hybrid approach, DDGan, that embeds a Decision Diagram (DD) into a Generative Adversarial Network (GAN). In DDGan, the solutions generated from the neural network are filtered through a decision diagram module to ensure feasibility. DDGan thus combines the benefits of machine learning and constraint reasoning. When applied to the problem of schedule generation, we demonstrate that DDGan generates schedules that reflect the agents’ implicit preferences, and better satisfy operational constraints.
This work was supported by Office of Naval Research grant N00014-18-1-2129.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Addi, H.A., Bessiere, C., Ezzahir, R., Lazaar, N.: Time-bounded query generator for constraint acquisition. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 1–17. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_1
Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C–27, 509–516 (1978)
Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_11
Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, pp. 141–157. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_13
Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. CoRR abs/1611.09940 (2016). http://arxiv.org/abs/1611.09940
Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Decision Diagrams for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms, 1st edn, p. 254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42849-9
Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artif. Intell. 244, 315–342 (2017)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. CoRR abs/1809.11096 (2018)
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C–35, 677–691 (1986)
Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing problems. Oper. Res. 61(6), 1411–1428 (2013)
Coletta, R., Bessiere, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinqueton, J.: Constraint acquisition as semi-automatic modeling. In: Coenen, F., Preece, A., Macintosh, A. (eds.) SGAI 2003, pp. 111–124. Springer, London (2004). https://doi.org/10.1007/978-0-85729-412-8_9
Dai, H., Tian, Y., Dai, B., Skiena, S., Song, L.: Syntax-directed variational autoencoder for structured data. CoRR abs/1802.08786 (2018)
Dragone, P., Teso, S., Passerini, A.: Constructive preference elicitation. Front. Robot. AI 4, 71(2018)
Galassi, A., Lombardi, M., Mello, P., Milano, M.: Model agnostic solution of CSPs via deep learning: a preliminary study. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 254–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_18
Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing System, NIPS 2014, vol. 2, pp. 2672–2680 (2014)
Graves, A., et al.: Hybrid computing using a neural network with dynamic external memory. Nature 538(7626), 471–476 (2016)
Hu, Z., Yang, Z., Liang, X., Salakhutdinov, R., Xing, E.P.: Toward controlled generation of text. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1587–1596 (2017)
Hu, Z., et al.: Deep generative models with learnable knowledge constraints. CoRR abs/1806.09764 (2018)
Jin, W., Barzilay, R., Jaakkola, T.S.: Junction tree variational autoencoder for molecular graph generation. In: ICML (2018)
Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms over graphs. In: Advances in Neural Information Processing Systems, pp. 6348–6358 (2017)
Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoencoder. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1945–1954 (2017)
Lallouet, A., Legtchenko, A.: Building consistencies for partially defined constraints with decision trees and neural networks. Int. J. Artif. Intell. Tools 16(4), 683–706 (2007)
Lallouet, A., Lopez, M., Marti, L., Vrain, C.: On learning constraint problems. In: Proceedings of IJCAI, pp. 45–52 (2010)
Lombardi, M., Milano, M.: Boosting combinatorial problem modeling with machine learning. In: Proceedings of IJCAI, pp. 5472–5478 (2018)
Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Artif. Intell. 244, 343–367 (2017)
Lombardi, M., Gualandi, S.: A Lagrangian propagator for artificial neural networks in constraint programming. Constraints 21(4), 435–462 (2016)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR abs/1411.1784 (2014)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR abs/1511.06434 (2015)
Teso, S., Sebastiani, R., Passerini, A.: Structured learning modulo theories. Artif. Intell. 244, 166–187 (2017)
Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, pp. 2692–2700 (2015)
Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Xue, Y., van Hoeve, WJ. (2019). Embedding Decision Diagrams into Generative Adversarial Networks. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-19212-9_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19211-2
Online ISBN: 978-3-030-19212-9
eBook Packages: Computer ScienceComputer Science (R0)