Nothing Special   »   [go: up one dir, main page]

Skip to main content

Embedding Decision Diagrams into Generative Adversarial Networks

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2019)

Abstract

Many real-world decision-making problems do not possess a clearly defined objective function, but instead aim to find solutions that capture implicit user preferences. This makes it challenging to directly apply classical optimization technology such as integer programming or constraint programming. Machine learning provides an alternative by learning the agents’ decision-making implicitly via neural networks. However, solutions generated by neural networks often fail to satisfy physical or operational constraints. We propose a hybrid approach, DDGan, that embeds a Decision Diagram (DD) into a Generative Adversarial Network (GAN). In DDGan, the solutions generated from the neural network are filtered through a decision diagram module to ensure feasibility. DDGan thus combines the benefits of machine learning and constraint reasoning. When applied to the problem of schedule generation, we demonstrate that DDGan generates schedules that reflect the agents’ implicit preferences, and better satisfy operational constraints.

This work was supported by Office of Naval Research grant N00014-18-1-2129.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Addi, H.A., Bessiere, C., Ezzahir, R., Lazaar, N.: Time-bounded query generator for constraint acquisition. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 1–17. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_1

    Chapter  MATH  Google Scholar 

  2. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C–27, 509–516 (1978)

    Article  Google Scholar 

  3. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_11

    Chapter  Google Scholar 

  4. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, pp. 141–157. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_13

    Chapter  Google Scholar 

  5. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. CoRR abs/1611.09940 (2016). http://arxiv.org/abs/1611.09940

  6. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Decision Diagrams for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms, 1st edn, p. 254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42849-9

    Book  MATH  Google Scholar 

  7. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artif. Intell. 244, 315–342 (2017)

    Article  MathSciNet  Google Scholar 

  8. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. CoRR abs/1809.11096 (2018)

    Google Scholar 

  9. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C–35, 677–691 (1986)

    Article  Google Scholar 

  10. Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing problems. Oper. Res. 61(6), 1411–1428 (2013)

    Article  MathSciNet  Google Scholar 

  11. Coletta, R., Bessiere, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinqueton, J.: Constraint acquisition as semi-automatic modeling. In: Coenen, F., Preece, A., Macintosh, A. (eds.) SGAI 2003, pp. 111–124. Springer, London (2004). https://doi.org/10.1007/978-0-85729-412-8_9

    Chapter  Google Scholar 

  12. Dai, H., Tian, Y., Dai, B., Skiena, S., Song, L.: Syntax-directed variational autoencoder for structured data. CoRR abs/1802.08786 (2018)

    Google Scholar 

  13. Dragone, P., Teso, S., Passerini, A.: Constructive preference elicitation. Front. Robot. AI 4, 71(2018)

    Google Scholar 

  14. Galassi, A., Lombardi, M., Mello, P., Milano, M.: Model agnostic solution of CSPs via deep learning: a preliminary study. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 254–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_18

    Chapter  MATH  Google Scholar 

  15. Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing System, NIPS 2014, vol. 2, pp. 2672–2680 (2014)

    Google Scholar 

  16. Graves, A., et al.: Hybrid computing using a neural network with dynamic external memory. Nature 538(7626), 471–476 (2016)

    Article  Google Scholar 

  17. Hu, Z., Yang, Z., Liang, X., Salakhutdinov, R., Xing, E.P.: Toward controlled generation of text. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1587–1596 (2017)

    Google Scholar 

  18. Hu, Z., et al.: Deep generative models with learnable knowledge constraints. CoRR abs/1806.09764 (2018)

    Google Scholar 

  19. Jin, W., Barzilay, R., Jaakkola, T.S.: Junction tree variational autoencoder for molecular graph generation. In: ICML (2018)

    Google Scholar 

  20. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms over graphs. In: Advances in Neural Information Processing Systems, pp. 6348–6358 (2017)

    Google Scholar 

  21. Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoencoder. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1945–1954 (2017)

    Google Scholar 

  22. Lallouet, A., Legtchenko, A.: Building consistencies for partially defined constraints with decision trees and neural networks. Int. J. Artif. Intell. Tools 16(4), 683–706 (2007)

    Article  Google Scholar 

  23. Lallouet, A., Lopez, M., Marti, L., Vrain, C.: On learning constraint problems. In: Proceedings of IJCAI, pp. 45–52 (2010)

    Google Scholar 

  24. Lombardi, M., Milano, M.: Boosting combinatorial problem modeling with machine learning. In: Proceedings of IJCAI, pp. 5472–5478 (2018)

    Google Scholar 

  25. Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Artif. Intell. 244, 343–367 (2017)

    Article  MathSciNet  Google Scholar 

  26. Lombardi, M., Gualandi, S.: A Lagrangian propagator for artificial neural networks in constraint programming. Constraints 21(4), 435–462 (2016)

    Article  MathSciNet  Google Scholar 

  27. Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR abs/1411.1784 (2014)

    Google Scholar 

  28. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR abs/1511.06434 (2015)

    Google Scholar 

  29. Teso, S., Sebastiani, R., Passerini, A.: Structured learning modulo theories. Artif. Intell. 244, 166–187 (2017)

    Article  MathSciNet  Google Scholar 

  30. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, pp. 2692–2700 (2015)

    Google Scholar 

  31. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yexiang Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, Y., van Hoeve, WJ. (2019). Embedding Decision Diagrams into Generative Adversarial Networks. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics